
University of Bonn

Bachelor Thesis

Implementing Datadive: A Web Application for
Data Analysis

Luca Fabio Schultz
luca.schultz@icloud.com

First Examiner

Prof. Dr. Matthew Smith

Second Examiner

Prof. Dr. Michael Meier

Supervisor

Florin Martius

Institute of Computer Science 4

Behavioral Security Group

November 11, 2024

1

Abstract

This thesis presents the design and implementation of Datadive, a web-based

platform for data analysis. The platform aims to bridge the gap between GUI-based

and code-based analysis tools by providing an intuitive interface while retaining the

!exibility of programmatic approaches. At its core, Datadive features a cell-based

interface, where each cell represents a step in the data analysis work!ow. This design

combines the accessibility of graphical interfaces with the power of code-based

tools.

The thesis also outlines the platform's architecture, which utilizes the Project

Jupyter ecosystem for code execution and management, along with a modern web

stack for the backend and user interface. The system employs a multi-tenant

architecture with Kubernetes for scalability and isolation, incorporating separate

databases for tenant and landlord functionalities. Architectural decisions prioritize

maintainability and extensibility by using TypeScript throughout the stack and

implementing robust error handling and dependency injection patterns.

While the current implementation serves as a technical foundation rather than a

complete platform, it lays the groundwork for future development. The thesis

concludes by outlining the next steps needed to transform this foundation into a

fully functional data analysis platform. These steps include enhancing data

management capabilities, adding user collaboration features, and developing tools

for statistical analysis assistance.

2

Table of Contents

1. Introduction

1.1. Scope of this Thesis

2. Requirements

2.1. Functional Requirements

2.2. Technical Requirements

3. Architecture

3.1. Project Jupyter Ecosystem

3.2. Datadive Architecture

3.3. Code Organization

3.4. Data Model

4. Code Style

4.1. Code Style Enforcement

4.2. Tests

4.3. Functional Programming

4.4. Error Handling

4.5. Dependency Injection

4.6. Factory Functions

4.7. Enum Like Objects

5. Technologies

5.1. Typescript

5.2. Bun

5.3. Kubernetes

5.4. Hono.js & Related Libraries

5.5. libSQL

5.6. Kysely & Kysely Codegen

5.7. React

5.8. TanStack Router and TanStack Query

3

5.9. Vite & Vitest

5.10. Tailwind CSS

5.11. Astro.js

5.12. Zod

5.13. neverthrow

5.14. Radix UI

5.15. ESLint

5.16. Prettier

5.17. Turborepo

5.18. Lucia Auth

5.19. GitHub Actions

6. Third Party Services

6.1. Turso

6.2. Resend

6.3. GitHub

7. Packages

7.1. The @datadive/db Package

7.2. The @datadive/email Package

7.3. The @datadive/utils Package

7.4. The @datadive/auth Package

7.5. The @datadive/spec Package

7.6. The @datadive/core Package

7.7. The Con"guration Packages

8. Applications

8.1. The @datadive/api App

8.2. The @datadive/web App

8.3. The @datadive/docs App

9. Setup Development Environment

9.1. Jupyter Hub

9.2. VSCode

4

9.3. Bun

9.4. Turso Account

9.5. Resend Account

9.6. Repository Setup

9.6.1. Environment Files

9.7. Running Datadive

9.8. Creating a Tenant

10. Outlook

10.1. Challenges and Limitations

10.2. Next Steps

10.3. Beyond the Core Functionality

10.4. Conclusion

5

1. Introduction

Users of data analysis software are often not statisticians or data scientists with

extensive programming skills. Instead, they are typically experts or students in their

own research "elds who have learned established statistical methods to apply to

datasets with known structures. Since graphical user interfaces (GUIs) are the most

common way to interact with software, it is no surprise that these users often rely

on GUI-based applications for their data analysis tasks. [1]

Fig. 1: Diagram of a realistic data analysis workflow. The black arrows represent the idealized

workflow, while the dashed arrows illustrate the actual workflow. The diagram is taken from

the online book "Robust data analysis: an introduction to R" by Sina Rüeger. [2]

While GUI-based data analysis tools o#er a familiar interface for users without

programming experience, they often have limitations that can impede the analysis

process. Data analysis is complex and nonlinear, typically requiring multiple

iterations of trial and error, as illustrated in "gure 1. GUI-based tools often

constrain users to a prede"ned work!ow, which can be restrictive. If a speci"c

functionality is unavailable in the GUI, users must export and re-import the data to

6

use another tool to complete a step in the analysis. Additionally, reproducing an

analysis is challenging because the steps taken are not recorded in a script that can

be rerun. [3] [2]

Recognizing the challenges of current data analysis approaches, the Behavioral

Security Research Group at the University of Bonn is developing a data analysis

tool as part of Florin Martius' doctoral thesis: Datadive. This tool aims to provide a

GUI-based platform that encompasses the entire work!ow of scienti"c data analysis

projects. During the conceptual phase, discussions with Florin Martius and other

research group members identi"ed the platform's requirements. Based on these

requirements, a concept for the platform was developed.

Fig. 2: A simplified representation of the Datadive data model. Each cell corresponds to a piece

of code. All cells together form a script that contains the analysis workflow.

The central component of Datadive is a cell-based interface, where each cell

represents a step of the data analysis work!ow. Each cell receives the output of the

preceding cell and additional parameters provided by the user as input. The cells are

7

arranged in a sequence that represents the entire analysis work!ow. Users can

conduct the analysis by adding, deleting, or reordering cells. To revisit a previous

step, users can replace a cell or modify its input parameters.

A simpli"ed description of the underlying data model, illustrated in "gure 2, is

that each cell corresponds a piece of code. All cells together form a script that users

can manually edit if needed. This approach combines the !exibility of code-based

tools with the user-friendliness of GUI-based tools. The platform is accessible to

users without programming expertise while remaining !exible enough for expert

users to write code when certain functionalities are unavailable in the GUI.

Additionally, the data model ensures reproducibility by recording the steps of the

analysis in a script that can be rerun.

1.1. Scope of this Thesis

The conceptual part of the thesis yielded requirements and the already described

concept for the Datadive platform.

During the practical part, an architecture that implements this concept was

developed, and a technical foundation for it was established. The resulting codebase

is not a functional platform but serves as a starting point for future development.

The main focus was on creating a maintainable codebase. This is particularly

important as Datadive is developed within the context of a doctoral thesis and will

be a collaborative project between the research group sta# and students at the

University of Bonn. To facilitate collaboration, great emphasis was placed on

making it easy for sta# to ensure contributions meet the project's quality standards

and for developers to start contributing. Complex solutions were avoided, and the

number of technologies used was limited to reduce the learning curve for new

developers.

The written portion of this thesis outlines the requirements established during

the conceptual phase. It describes the developed architecture and details the

structure and organization of the codebase, serving as documentation. Additionally,

8

it references the technical decisions made during development and provides an

outlook on the future work needed to make the Datadive platform fully functional.

This documentation is also available as a hosted website, featuring slightly

di#erent content. The structure of both formats is loosely based on the Diataxis

framework for technical documentation proposed by Daniele Procida. Both

formats contain an explanation section that provides context and connections to

the Datadive platform, a reference section that o#ers concise information about

speci"c elements or features and a guide section that provides step-by-step

instructions for contributors. [4] [5]

9

•

•

•

•

•

•

2. Requirements

This thesis distinguishes between functional and technical requirements, as they

serve di#erent purposes in software development and must be managed di#erently

throughout the project lifecycle.

2.1. Functional Requirements

The functional requirements for the Datadive platform were derived from the

needs of users. The key requirements, in no particular order, are:

Comprehensiveness: In the future, the platform should encompass the entire

work!ow of scienti"c data analysis projects, including data import, tidying,

transformation, analysis, and visualization.

Flexibility: The platform should allow users to write code instead of relying

solely on the built in functionalities. This ensures the platform is adaptable to

the speci"c needs of researchers and can be used even if not all features are

available in the GUI.

Extensibility: The platform should be extensible, allowing users to customize

their work!ows by adding new functionalities. These extensions should be

reusable across users and projects, enabling users to permanently enhance the

platform's capabilities.

Integration: The platform should integrate with external tools and services

commonly used in scienti"c research. It should support importing and

exporting data in commonly used formats, such as CSV, JSON and common

Excel formats.

Collaboration: The platform should support collaboration between users by

allowing them to share projects, notebooks, and "les.

Helpful Feedback: The platform should provide users with helpful feedback and

guidance on how to use its features e#ectively. For example, an integration with

the Qualtrics survey maker could allow users to import Qualtrics survey "les

10

•

•

•

•

•

•

•

•

and use the included metadata to recommend appropriate statistical tests for

analyzing the data.

User-Friendly Interface: The platform should have a user-friendly interface that

is easy to navigate and understand.

Security & Privacy: The platform should ensure the security and privacy of user

data by implementing appropriate access controls and security mechanisms. It

should collect only the necessary data and provide users with control over their

data.

Accessibility: The platform should be accessible to users with disabilities.

2.2. Technical Requirements

These requirements are focused on the technical aspects of the platform and guide

the development of the Datadive platform. The key technical requirements are:

Maintainability: The platform should be maintainable, allowing developers to

easily understand and contribute to the codebase while working independently

on di#erent parts of the platform.

Isolated Environments: The platform should provide isolated environments for

users to work in, ensuring that each user has their own workspace to store data

and execute code. This prevents interference between users, ensures data privacy

and security and prevents the execution of malicious code on Datadive's servers.

Arbitrary Code Execution: To provide fallback options for users whose

requirements are not not met by the built-in functionality , the platform should

support writing and executing arbitrary code.

Customizable Execution Environments: The platform should allow users to

customize their execution environments by installing additional libraries and

packages which are not part of the default environment.

Performance: The platform should be performant, providing users with a

responsive and smooth experience. This includes fast loading times, quick

execution of code, and minimal latency in interactions.

11

•

•

Reliability: The platform should be reliable, ensuring that users can access their

data and work without interruptions. This includes high availability, fault

tolerance, and data durability.

Scalability: The platform should be scalable to support a large number of users

and data analysis tasks. This ensures that the platform can handle increasing

workloads and user demands without performance degradation.

These requirements guided the architectural decisions made during this thesis,

ensuring the platform is well-positioned to meet these requirements as it evolves.

12

3. Architecture

Software architecture de"nes the structure of a software system, detailing its

organization and the interaction of its components. It serves as a blueprint to

ensure the system is scalable, reliable, and maintainable. E#ective software

architecture is crucial for managing complexity and guiding development to meet

requirements. This thesis distinguishes between two architectural layers: code

organization and system architecture. Code organization refers to the structure of

the codebase, while system architecture addresses the high-level arrangement of

components (e.g., the backend, a microservice, or a client app) and their

interactions during runtime . [6]

This chapter provides an overview of the Datadive platform's architecture,

explaining the decisions and rationale behind it. It describes the high-level

architecture independently from the technologies used. The following chapters

discuss the selected technologies, the reasons for their choice, and the resulting code

organization.

3.1. Project Jupyter Ecosystem

The key requirement that shaped the architecture of the Datadive platform was the

ability for users to write code rather than depend solely on the GUI for data

analysis. This choice aimed to increase the platform's !exibility, enabling it to meet

researchers' speci"c needs and remain functional even when not all features are

accessible through the GUI. Additionally, this decision resulted in an architecture

based on Project Jupyter, which provides components for authoring and executing

code in a web environment. This section outlines Project Jupyter, focusing on the

components relevant for the Datadive platform and their interactions.

Project Jupyter o#ers a platform for writing code, visualizing data, and sharing

results. The code is stored in notebooks, which are organized into cells that can

contain code, text, or visualizations. This cell-based interface allows users to write

and execute code interactively. Project Jupyter o#ers several components that can be

1

13

combined in various ways for use either locally or in a server environment. Project

Jupyter is used by institutions like the University of Berkeley, the University of

She$eld or the Michigan State University and companies such as Bloomberg,

Google and IBM. In 2017, a Team at UC San Diego analyzed over 1 million

notebooks stored in public GitHub repositories [7]. In 2019 a team of project

Jupyter contributors found nearly 5 million notebooks stored in public repositories

in a similar e#ort, both numbers suggesting that Project Jupyter is a widely used

tool for data science tasks. [8] [9]

{

 "metadata": { *+, },

 "cells": [

 {

 "cell_type": "markdown",

 "metadata": { *+, },

 "source": ["some *markdown*"]

 },

 {

 "cell_type": "code",

 "execution_count": 1,

 "metadata": { *+, },

 "source": ["print('hello, world!')"],

 "outputs": [*+,]

 }

]

}

Fig. 3: Simplified example of the Jupyter Notebook JSON format. [10]

When writing code in Jupyter, users interact with either Jupyter Notebook or

JupyterLab. Both are JavaScript applications that run in web browsers. Jupyter

Notebook is the original interface, while JupyterLab is the next-generation interface

that provides enhanced functionality. JupyterLab allows users to open multiple

notebooks or "les, such as HTML, text, and Markdown, as tabs in the same

14

window. It also o#ers a user experience similar to that of an integrated development

environment (IDE). Both interfaces enable users to write and execute code in a

notebook format. [9] [11]

As illustrated in "gure 3, the code is stored in notebooks, which are JSON "les.

The top level object of the JSON "le contains metadata about the notebook, such

as the kernel used to execute the code. The cells array contains the individual cells

of the notebook, which can be either code cells or markdown cells. Code cells

contain the source code to be executed, while markdown cells contain text

formatted using Markdown. The notebook format allows users to write code,

visualize data, and share results in a single document. [10]

User

Browser

Server

JupyterLab

Jupyter ServerNotebook File Kernel

Code cells

Execution results
Notebook data

HTTP API

Fig. 4: Simplified overview of the components required for Jupyter code execution [11].

Kernels are used to execute code in various programming languages. A kernel

communicates through a lightweight messaging protocol called ZeroMQ. It

executes the code sent to it and responds with the results. Additionally, it o#ers

2

15

code completion and maintains the state of the code execution during sessions. The

Jupyter ecosystem provides kernels for several programming languages, including

Python, R, and Julia. [11] [12]

The Jupyter Server acts as the communication hub between these components,

as shown in "gure 4. It is responsible for saving and loading notebooks, processing

user interactions (e.g., executing code cells), and managing the kernels. User

interactions occur through an HTTP API , which the Jupyter Notebook and

JupyterLab interfaces use to communicate with the Jupyter Server. [11]

Jupyter Servers do not have a concept of users or access control. Anyone who can

access a jupyter server can also access all notebooks and execute arbitrary code. To

address this, the Jupyter Servers can be managed by JupyterHub, which is a multi-

user server that provides access to Jupyter Servers for groups of users. It manages

user authentication, access control and resource allocation like starting and

stopping Jupyter Servers for users. [11]

3.2. Datadive Architecture

As illustrated in "gure 5, the architecture of the Datadive platform comprises three

main components: the frontend, the backend, and the Jupyter components.

Jupyter Hub manages the starting and stopping of Jupyter servers for each user

within a Kubernetes cluster. Kubernetes is an open-source container orchestration

platform that automates the deployment, scaling, and management of

containerized applications. The Jupyter servers are based on Docker images and

run in Docker containers. They handle notebooks, related "les, and code execution.

Using separate Jupyter servers for each user ensures isolated environments for "le

storage and code execution. Additionally, since Jupyter Hub supports customizing

the Docker images used to run the Jupyter servers, future versions of Datadive may

allow users to install additional libraries and packages in their execution

environments [13].

3 4

5

16

Kubernetes

Frontend Database

Jupyter Hub

Jupyter Server

Backend

Store/retrieve data

Authentication and user information

Create/edit notebooks, execute code

User interactions

Start/stop servers

Fig. 5: Overview of the Datadive platform architecture.

The backend communicates with the Jupyter components through their respective

HTTP APIs [14] [15] [16]. It acts as a communication hub between the frontend

and the Jupyter components, but also provides additional functionality, such as

user management, and create, read, update and delete (CRUD) operations for

projects, notebooks and other resources. It abstracts the complexity of the Jupyter

components and provides a simpli"ed interface for the frontend to communicate

with. The frontend is a single-page application (SPA) that communicates with the

backend using a HTTP API.

This architecture allows for a clear separation of concerns between the frontend,

backend, and Jupyter components. The frontend is responsible for rendering the

user interface and handling user interactions, while the backend manages the

business logic and communicates with the Jupyter. The Jupyter components

handle the execution of code and the management of notebooks.

In addition to separating concerns, the decision to divide the application into

frontend and backend components and use a HTTP API for communication

aimed to enable independent development and maintenance. Both the backend and

6

7

17

frontend can be built according to an API speci"cation, which outlines the

endpoints and data structures for communication. This speci"cation then serves as

a contract between the frontend and backend and is used for generating an API

client in the frontend and for inferring endpoint return types in the backend,

enforcing the contract between the two components.

This strategy introduces some additional overhead and may slow down

development. However, it enables di#erent teams to work on the frontend and

backend simultaneously without interfering with each other's tasks. As long as the

API speci"cation is followed, changes can be made to either the backend or

frontend without a#ecting the other component. If a feature requires modi"cations

to the API, those changes are re!ected in the API speci"cation, allowing both the

frontend and backend to be updated independently. To facilitate development, the

API speci"cation can be used to mock the backend API, enabling frontend

developers to work without a fully functional backend. Meanwhile, backend

developers can utilize API clients like Postman or cURL to make requests to the

backend and develop the API independently of the frontend.

3.3. Code Organization

Datadive is a complex software system composed of multiple components, each

with speci"c responsibilities and interactions. To manage this complexity, the

codebase is organized into separate modules, each focusing on a particular aspect of

the system. This chapter provides an overview of Datadive's code organization,

explaining the structure of the codebase and the rationale behind it.

Datadive employs a monorepo structure, where all the code for its frontend,

backend, and Jupyter components is contained within a single repository. This

approach provides several bene"ts. Firstly, it simpli"es development by allowing

developers to work on di#erent parts of the system without the need to switch

between multiple repositories, facilitating the implementation of features that span

multiple components. It also ensures consistent versioning, as all components are

updated together, preventing compatibility issues that might arise from changes to

8

18

individual components. Furthermore, shared con"gurations, such as con"guration

"les and build scripts, are centrally stored, which reduces duplication and maintains

uniformity across the system. The monorepo setup supports atomic commits,

enabling changes a#ecting multiple components to be committed simultaneously,

thereby simplifying the review and merging processes. Additionally, refactoring

code that spans multiple components is more straightforward when all the code

resides in a single repository. Lastly, code sharing is enhanced, as utilities,

con"gurations, and speci"cations can be easily accessed and used across di#erent

components, promoting e$ciency and consistency. [17]

datadive
├── CODE_OF_CONDUCT.md # Code of conduct
├── CONTRIBUTING.md # Contribution guidelines
├── LICENSE # Project license
├── README.md # Project README
├── SECURITY.md # Security guidelines
├── apps/
│ ├── api/ # @datadive/api package
│ ├── docs/ # @datadive/docs package
│ └── web/ # @datadive/web package
├── bun.lockb* # Bun lockfile
├── cspell.config.yaml # CSpell configuration
├── eslint.config.js # Root ESLint configuration
├── package.json # Root package.json
├── packages/
│ ├── auth/ # @datadive/auth package
│ ├── config/
│ │ ├── eslint/ # @datadive/eslint package
│ │ └── tsconfig/ # @datadive/tsconfig package
│ ├── core/ # @datadive/core package
│ ├── db/ # @datadive/db package
│ ├── email/ # @datadive/email package
│ ├── spec/ # @datadive/spec package
│ ├── turso/ # @datadive/turso package
│ └── utils/ # @datadive/utils package
├── patches/ # Patches for dependencies
├── prettier.config.js # Prettier configuration
├── scripts/ # Scripts for common tasks
├── thesis/ # Written thesis
├── tsconfig.json # TypeScript configuration
└── turbo.json # Turborepo configuration

Fig. 6: Overview of the Datadive monorepo structure, it's packages and configuration files.

19

The Datadive monorepo is managed by Bun workspaces, which allow the codebase

to be divided into several packages stored within the monorepo. In this context,

packages are reusable pieces of code that can be installed and integrated into a

software development project as dependencies. These packages are then combined

to build the Datadive components. [18]

As shown in "gure 6, the repository's structure includes two main directories at

the root of the project: /apps and /packages . These paths are relative to the root of

the repository, containing the version control data for Datadive. The /apps

directory includes the code for the frontend, backend, and documentation

applications. In contrast, the /packages directory holds packages used by other

packages or applications.

Datadive organizes code into packages to promote reuse and enforce

architectural boundaries. Each package encapsulates speci"c functionality, such as

database access, authentication logic, or business logic. This approach allows

contributors to focus their development e#orts on individual packages without

feeling overwhelmed by the entire codebase. A subcategory of packages is dedicated

to con"guration and is stored in packages/config . These packages contain shared

con"guration "les, such as ESLint or TypeScript con"gurations.

Each package has a consistent structure, as shown in "gure 7. Typically, all

con"guration "les are located at the root of the package, where the package.json "le

is stored. This "le contains machine-readable information about the package, such

as its name, version, and the entry point for accessing the code. The following paths

are relative to the package root..If the package generates build output, it will be

found in the top-level dist directory. Scripts for common development tasks are

stored in the scripts directory. The source code is located in the src directory,

organized into subdirectories that often separate tenant-speci"c and landlord-

speci"c code. Packages often include an src/errors directory that contains all the

errors the package can produce. The src/index.ts "le exports the package's public

API, serving as the entry point for other packages to import its functionality.

20

 package/
 ├── dist/ # Build output
 ├── scripts/ # Scripts for common tasks
 ├── src/ # Source code of the package
 │ ├── landlord/ # Landlord-specific code
 │ │ ├── tenant/ # Tenant management feature
 │ │ │ ├── create-tenant.ts
 │ │ │ └── shared/ # Shared code for tenant management
 │ │ └── user/ # User management feature
 │ │ ├── list-users.ts
 │ │ └── update-user.ts
 │ ├── shared/ # Shared code for landlord features
 │ │ ├── types/ # Shared landlord types
 │ │ │ └── user.ts
 │ │ └── utils/ # Shared landlord utilities
 │ │ ├── parse-cookie.ts
 │ │ └── parse-date.ts
 │ └── tenant/ # Tenant-specific code
 │ ├── notebook/ # Notebook feature
 │ │ ├── execute/ # Notebook execution feature
 │ │ └── update-notebook.ts
 │ ├── shared/ # Shared code for tenant features
 │ │ └── types/ # Shared tenant types
 │ │ └── notebook.ts
 │ └── user/ # User feature
 │ ├── update-user.ts
 │ ├── delete-user.ts
 │ └── shared/ # Shared code for user feature
 │ └── utils/ # Shared user utilities
 ├── package.json
 ┆

Fig. 7: Example structure of a package in the Datadive codebase.

Within the src or src/{tenant|landlord} directory, the code is organized by feature

or functionality. All code related to a speci"c feature is stored in a single "le or, if

extensive, in a directory called a "feature directory" in this thesis. Feature directories

can contain other feature directories and represent a distinct scope of functionality,

which narrows as the directory depth increases. For example, the core package may

include a feature directory for user-related functionality at src/tenant/user and

another for notebook-related functionality at src/tenant/notebook . Within the latter,

the src/tenant/notebook/execution directory has a more speci"c scope, containing

code related to notebook execution.

21

Each feature directory may include a shared directory that contains shared code

used within the feature or across sub-features. This directory is typically organized

by concern, with subdirectories for shared constants, utilities, or types. According

to convention, shared code should reside in the lowest shared directory or the

narrowest scope possible, meaning it should be as close as possible to the code that

uses it. For example, if a utility function is used in more than one "le but speci"c to

one aspect of a feature, such as notebook execution, it should be placed in the

src/tenant/notebook/execution/shared directory. If the utility function is used in

multiple aspects of the feature, it should be in the src/tenant/notebook/shared

directory. If it is utilized across multiple tenant speci"c features, it should be located

in the src/tenant/shared directory.

The amount of nesting within feature directories should be kept as low as

possible without storing an excessive number of source code "les in a single

directory. This thesis cannot provide an objective metric for when a feature

directory should be divided into multiple subdirectories. While some numbers seem

obviously incorrect—such as creating subdirectories for single "les or keeping a

thousand "les in one directory—it is unrealistic to establish a simple set of rules that

apply to all cases. Instead, future maintainers of Datadive will need to make this

decision on a case-by-case basis as the codebase grows and evolves.

File names are chosen to re!ect the content and purpose of the "le. Files that

export a single function or class are named after the exported entity. In contrast,

"les that export multiple entities are named either after the primary entity of the

functionality they contain. For example, a "le exporting a single utility function

might be named get-notebook-path.ts , while a "le exporting multiple utility

functions could be named notebook-utils.ts . Typically, "le names are written in

kebab case to support case-sensitive "le systems and enhance readability.

This structure follows the principle of Locality of Behavior (LoB), which asserts

that the behavior of a unit of code should be clear by examining only that unit.

While the principle of locality of behavior often con!icts with the Don't Repeat

Yourself (DRY) principle and the Separation of Concerns (SoC) principle, no

9

22

research indicates that any of these principles is more important for codebase

maintainability than the others. However, some prominent computer scientists

suggest that locality of behavior may be the most crucial principle for code

maintainability. For example, in his book Patterns of Software, Richard P. Gabriel

emphasizes that the key feature for easy maintenance is locality. The decision to

organize much of Datadive's code around the principle of locality of behavior

re!ects personal preferences, as do many other choices in software development.

Nevertheless, locality of behavior is a well-established principle in software

development, centered around the idea of making code easy to understand. This is

particularly important for a project like Datadive, where contributors may

frequently change due to the nature of a project that is developed in collaboration

between students and researchers.

3.4. Data Model

The data model is a critical part of Datadive's architecture. It de"nes how data is

organized, stored, and accessed within the system. The model provides an abstract

representation of the application's data structures and relationships. This chapter

outlines the data model used developed for Datadive and explains how it ties into

the desired functionality of the platform.

Since Datadive relies on Jupyter components for code execution and

management, the data model is aligned with Jupyter's data structures. This

alignment simpli"es the integration of Jupyter components and leverages the

familiarity of users accustomed to Jupyter's terminology and concepts to enhance

usability. At the core of the data model are users, projects, notebooks, and cells.

23

cell_template
id TEXT PK, UNQ

title TEXT UNQ

description TEXT NULL

code TEXT

created_at timestamp DFLT

updated_at timestamp DFLT

deleted_at timestamp NULL, DFLT

cell_template_input
id TEXT PK, UNQ

cell_template_id TEXT FK, UNQ

input_id TEXT FK, UNQ

placeholder TEXT NULL

label TEXT

description TEXT NULL

required boolean NULL

created_at timestamp DFLT

updated_at timestamp DFLT

deleted_at timestamp NULL, DFLT

input
id TEXT PK, UNQ

title TEXT

description TEXT

type TEXT FK

created_at timestamp DFLT

updated_at timestamp DFLT

deleted_at timestamp NULL, DFLT

collaborator
id TEXT PK, UNQ

user_id TEXT FK, UNQ

project_id TEXT FK, UNQ

created_at timestamp DFLT

updated_at timestamp DFLT

deleted_at timestamp NULL, DFLT

project
id TEXT PK, UNQ

title TEXT

owner_id TEXT FK

created_at timestamp DFLT

updated_at timestamp DFLT

deleted_at timestamp NULL, DFLT

user
id TEXT PK, UNQ

username TEXT UNQ

email TEXT UNQ

email_verified boolean DFLT

password_hash TEXT

first_name TEXT

last_name TEXT

created_at timestamp DFLT

updated_at timestamp DFLT

deleted_at timestamp NULL, DFLT

email_verification_code
id TEXT PK, UNQ

code TEXT

user_id TEXT FK

email TEXT

expires_at timestamp

created_at timestamp DFLT

updated_at timestamp DFLT

input_type
id TEXT PK, UNQ

notebook
id TEXT PK, UNQ

title TEXT

path TEXT

project_id TEXT FK

status TEXT FK

created_at timestamp DFLT

updated_at timestamp DFLT

deleted_at timestamp NULL, DFLT

notebook_status
id TEXT PK, UNQ

password_reset_token
id TEXT PK, UNQ

token_hash TEXT

user_id TEXT FK

expires_at timestamp

created_at timestamp DFLT

updated_at timestamp DFLT

session
id TEXT PK, UNQ

user_id TEXT FK

expires_at INTEGER

created_at timestamp DFLT

updated_at timestamp DFLT

Fig. 8: The database schema of the tenant database as ER diagram.

Each Datadive user corresponds to a user in the data model, as shown in "gure 8.

Users create and own projects, which store metadata such as the project name and

connection details to a Jupyter server instance created using JupyterHub. Each

project contains notebooks, but Datadive only stores notebook metadata in the

database, including the notebook name and associated project. The Jupyter server

instance manages the notebook content: cells, the basic units of code, text, or other

content.

Jupyter supports several cell types, with code cells and display data cells being the

most relevant for Datadive. Code cells contain executable code, while display data

cells show the output of that code, such as text, images, or plots. When executed

sequentially, the code cells in a notebook form a script that represents the data

analysis work!ow, as illustrated in "gure 2. Unlike using Jupyter notebooks directly,

Datadive users do not create cells by writing code. Instead, they select from

prede"ned cell templates that include code snippets for data analysis tasks, such as

loading data from a "le, cleaning data, or performing statistical analysis. The code

of the cell templates can include placeholders for user input, which are provided

through the Datadive user interface. Each placeholder has an associated input with

24

a name and type, which can be a string, number, path, or various other value types.

These inputs generate the user interface for the cell, allowing users to provide the

necessary information for the code snippet.

Many of the key interactions in Datadive revolve around cells. Users can create,

read, update, and delete cells within a notebook. When a user executes a cell,

Datadive requests the Jupyter server execute the notebook. The server processes the

code and returns the output, which Datadive displays to the user. In the future,

Datadive will support more advanced interactions, such as the creation of custom

cell templates, the integration with external services or plugins to provide additional

functionality, and storing the execution history of each cell. Another important

part of the initially planned features are interactive cell templates. These could be

used to guide users through complex data analysis tasks such as test selection or data

cleaning.

One intentionally simpli"ed part of the core data model in the initial

implementation is dataset storage. Since Jupyter supports "le uploads and notebook

code can access the "le system, Datadive does not store datasets in the database.

Instead, users upload datasets through the Datadive HTTP API to the Jupyter

Server, where they can be accessed in code cells. This approach simpli"es the data

model and reduces the complexity of managing large dataset storage in the database

or a similar system. However, it also limits the platform's capabilities, as users

cannot easily share datasets between projects or access them through the Datadive

user interface if the underlying Jupyter server is not running. Future work on

Datadive will need to improve dataset management, including the ability to upload,

share, and visualize datasets directly in the platform.

Apart from the core data model, Datadive also o#ers features like user

management, authentication, project sharing, and collaboration. These features are

implemented using additional data structures and relationships that extend the core

model. For example, authentication involves data structures for validating emails,

25

resetting passwords and managing user sessions. Future versions of Datadive may

also include more advanced user management features, such as roles and

permissions to control access to projects and notebooks.

email_verification_code
id TEXT PK, UNQ

code TEXT

user_id TEXT FK

email TEXT

expires_at timestamp

created_at timestamp DFLT

updated_at timestamp DFLT

user
id TEXT PK, UNQ

username TEXT UNQ

email TEXT UNQ

email_verified boolean DFLT

password_hash TEXT

first_name TEXT

last_name TEXT

created_at timestamp DFLT

updated_at timestamp DFLT

deleted_at timestamp NULL, DFLT

password_reset_token
id TEXT PK, UNQ

token_hash TEXT

user_id TEXT FK

expires_at timestamp

created_at timestamp DFLT

updated_at timestamp DFLT

session
id TEXT PK, UNQ

user_id TEXT FK

expires_at INTEGER

created_at timestamp DFLT

updated_at timestamp DFLT
tenant
id TEXT PK, UNQ

domain TEXT UNQ

name TEXT

created_at timestamp DFLT

updated_at timestamp DFLT

deleted_at timestamp NULL, DFLT

tenant_database
id TEXT PK, UNQ

url TEXT UNQ

encrypted_auth_token TEXT NULL

tenant_id TEXT FK, UNQ

created_at timestamp DFLT

updated_at timestamp DFLT

deleted_at timestamp NULL, DFLT

Fig. 9: The database schema of the landlord database as ER diagram.

The most complex supportive feature in the initial implementation is multi-

tenancy. Multi-tenancy is a software architecture where a single instance of an

application serves multiple customers, known as tenants. Tenants are typically

organizations with many users who need to manage their users and data, including

custom branding, tenant-speci"c features, plugins, and con"gurations. In Datadive,

multi-tenancy is implemented through a separate landlord application that creates

and manages tenants while routing requests to the appropriate tenant database.

Each tenant has its own database, ensuring that their data is isolated and inaccessible

to other tenants. This architecture features two distinct data models: one for tenant

data and another for landlord data. The landlord data model, shown in "gure 9, is

much simpler. It only needs to store information about tenants, connection details

for their databases, landlord users, and authentication details.

26

4. Code Style

The previous chapter discussed the architecture of the Datadive platform, which

refers to the high-level structure of a software system. It focused on how

components interact and the design choices, such as microservices versus

monolithic systems. Within this framework, code style plays a crucial role by

establishing conventions and guidelines for writing code, including formatting and

naming conventions. While architecture shapes the overall performance and

reliability of the software, a consistent code style ensures clarity and coherence at

the code level, enhancing readability and maintainability within a project.

Companies or large projects often have a code style guide to ensure that all

contributors follow the same conventions, two notable examples are Google and

Deno but there also many recommendations which are based on the code style of

open source code bases. [19] [20] [21]

This chapter introduces the code style used in the Datadive platform, outlining

conventions and guidelines. It covers various aspects of code style, such as

formatting, naming, documentation, and testing. By adhering to these guidelines,

Datadive contributors can write code that is consistent, readable, and maintainable,

facilitating collaboration and ensuring the quality of the software. The chapter

starts with a brief discussion of the tools and processes that support code style

enforcement in the Datadive codebase.

4.1. Code Style Enforcement

Although it is recommended that the process of contributing to Datadive includes a

code review by a maintainer, it is unlikely that all maintainers will be able to catch

every style violation. Therefore, maintaining a consistent code style across a project

requires tools that automate the enforcement of style guidelines. These tools help

ensure that all contributors follow the same conventions, reducing the likelihood of

inconsistencies and errors. The Datadive platform uses several tools to support code

style enforcement, the most important being ESLint and Prettier. ESLint is a static

27

code analysis tool that identi"es problematic patterns in JavaScript and TypeScript

code. In Datadive, it also enforces a consistent code style. Datadive includes several

ESLint con"gurations stored in the @datadive/eslint package, based on a base

con"guration described in more detail below. The other con"gurations mainly

consist of framework-speci"c rules for React and Playwright, which will not be

discussed in this chapter.

Table 1: ESLint plugins used in the Datadive codebase.

Most stylistic ESLint rules used in Datadive are based on the typescript-eslint

ESLint plugin, which extends ESLint to support TypeScript-speci"c rules. It o#ers

three shared con"gurations that serve as presets for sets of rules. Datadive uses the

recommended, strict, and stylistic con"gurations, each in their type-checked

version. The rules are detailed in the plugin's documentation. Notably, Datadive

prefers using TypeScript interfaces over types, as this can improve type-checking

performance. It also uses the Arrayjk syntax instead of [] for array declarations,

which generally enhances readability and maintains consistency with other generic

types. Additionally, it favors the index signature syntax { [key: string]: string }

over the Record<string, string> syntax because it allows for de"ning recursive types

and is closer to the mapped type syntax { [K in keyof T]: U } , making it less

PLUGIN PURPOSE LINK

eslint-plugin-jsdoc Enforces consistent JSDoc
comments for functions and
variables

github.com/gajus/eslint-
plugin-jsdoc

eslint-plugin-security Identi"es security
vulnerabilities in the codebase

github.com/eslint-
community/eslint-plugin-
security

eslint-plugin-eslint-comments Enforces consistent comments
in the codebase

github.com/mysticatea/eslint-
plugin-eslint-comments

eslint-plugin-turbo Includes rules for managing
monorepos

github.com/vercel/turborepo

https://github.com/gajus/eslint-plugin-jsdoc
https://github.com/eslint-community/eslint-plugin-security
https://github.com/mysticatea/eslint-plugin-eslint-comments
https://github.com/vercel/turborepo

28

confusing for contributors when "rst encountered. In addition to the typescript-

eslint plugin, Datadive uses the recommended shared con"gurations of several

other ESLint plugin, which are detailed in table 1. [22] [23] [24] [25]

Prettier is a code formatter that automatically applies a prede"ned style guide to

code. It ensures consistent formatting across the Datadive codebase, regardless of

individual developer preferences. As an opinionated formatter, Prettier limits

con"guration options to keep setup simple and avoid unnecessary debates and

bikeshedding.

The term "bikeshedding" refers to the tendency of people to spend an inordinate

amount of time discussing trivial or unimportant details which is often seen in

software development when developers focus on minor details like code formatting

instead of addressing critical issues like architecture or performance. [26]

The Datadive Prettier con"guration is stored at the root of the Datadive

repository in prettier.config.js . Notable deviations from the default Prettier

con"guration include using single quotes for strings, adding trailing commas in

arrays and objects, and omitting semicolons at the end of statements. Single quotes

have become the standard in the JavaScript ecosystem, trailing commas simplify

code reviews by ensuring that adding or removing an item from an array or object

does not a#ect surrounding lines. The absence allows for easier line swapping

without worrying about semicolon placement. [27] [28] [21]

4.2. Tests

The Datadive codebase follows the principle of locality of behavior, which groups

related code together to enhance understanding and maintenance. This principle is

based on the idea that code that works together should be close together. Following

this principle, tests are located in the same directory as the code they test, ensuring

that tests are easy to "nd and maintain. The Datadive codebase uses Vitest as the

testing framework for unit and integration tests. The test "le is named after the "le

it tests, with a .test.ts extension. For example, tests for parse-cookie.ts would be

29

in the same directory in a "le named parse-cookie.test.ts . This naming convention

makes it easy to associate tests with the code they cover and ensures that tests are

located near the code they test.

4.3. Functional Programming

While Datadive does not enforce a strict functional programming paradigm, it

encourages functional programming principles where appropriate. Functional

programming emphasizes the use of pure functions and immutability to improve

code quality and maintainability. Pure functions have no side e#ects and always

return the same output for the same input, making them easier to reason about and

test. Immutability ensures that data cannot be changed after it is created, reducing

the risk of bugs caused by unintended modi"cations. [29]

Datadive employs functional programming principles by minimizing the use of

classes and prioritizing functions and modules. Classes are used sparingly and only

when necessary, such as for creating instances of objects with state or for custom

errors. Many "les in Datadive export only a single function and may include non-

exported utilities to break the implementation into smaller parts. This approach

mirrors the structure of React applications, where "les often export a single

component. Modules encapsulate related functionality and promote code reuse. By

adhering to functional programming principles, Datadive aims to produce code

that is predictable, maintainable, and testable.

4.4. Error Handling

Error handling is a crucial aspect of writing robust and reliable software. Proper

error handling ensures that applications respond gracefully to unexpected

conditions and provide meaningful feedback to users. Modern languages like Swift

and Rust support typesafe errors, a highly requested feature in TypeScript. Typesafe

errors enable developers to de"ne a set of error types that can be thrown by a

function or method, see "gure 10. [30] [31] [32] [33]

30

function divide(a: number, b: number) throws DivisionByZeroError: number {

 if (b pqr 0) {

 throw new DivisionByZeroError("Can't divide by zero");

 }

 return a / b;

}

Fig. 10: Function that uses an non-existent syntax to include the thrown error in it's signature.

This approach enables developers to identify potential errors and manage them

e#ectively. Additionally, the TypeScript compiler can enforce the handling of all

possible errors. However, due to its design and compatibility with JavaScript,

TypeScript does not support type-safe errors and likely never will. Instead, Datadive

uses the neverthrow package to handle errors in a type-safe way. Neverthrow adopts

an "errors as values" approach to error management. Instead of throwing

exceptions, functions return a Result type that can be either Ok or Err . See the

example in "gure 11. [30]

function divide(a: number, b: number): Result<number, DivisionByZeroError> {

 if (b pqr 0) {

 return err(new DivisionByZeroError("Can't divide by zero"))

 }

 return ok(a / b)

}

const result = divide(10, 0)

if (result.isErr()) {

 console.error(result.error.message)

} else {

 console.log(result.value)

}

Fig. 11: Function that returns a Result type to manage errors in a type-safe manner.

31

This is essentially an implementation of the either monad, which is a functional

programming construct that represents a value that can be either a success or a

failure [33]. It is commonly used for error handling in functional programming

languages. By using neverthrow, Datadive ensures that errors are managed

consistently and safely throughout the codebase.

To maintain consistency in error handling across the codebase, Datadive de"nes

custom error classes for common scenarios. These classes extend the DatadiveError

class provided by the @datadive/utils package. Each error class must specify a

unique error code, which should be a lowercase string.

class DivisionByZero extends DatadiveError<

 'division_by_zero',

 { numerator: number; denominator: 0 }

> {

 public readonly code = 'division_by_zero'

}

const error = new DivisionByZero(

 wx Required error data

 { numerator: 1, denominator: 0 },

 wx Optional message

 `Can't divide by zero`,

 wx Optional cause

 { cause: undefined },

)

Fig. 12: Example custom error class that extends the DatadiveError class.

As in the example in "gure 12, the errors may provide additional context and

information by including a data property, which must be a JSON-serializable

object. This data property often contains details such as the input that triggered

the error or the context in which it occurred. Errors may also have a message

property, used for logging purposes, which should be a concise, human-readable

32

description of the error and its cause. The options passed to a Datadive error class

include a cause property, indicating the error that led to the current one. This

property is useful for tracking the chain of errors that resulted in the current error,

especially when a third-party library's error is wrapped in a custom error.

4.5. Dependency Injection

Dependency injection is a design pattern that promotes loose coupling between

components by injecting dependencies from the outside instead of creating them

internally. This approach makes components more modular and easier to test, as

dependencies can be mocked or replaced with stubs. Datadive employs a

straightforward, functional approach to dependency injection for managing

dependencies between modules and components. By convention, dependencies are

passed as the "rst argument to functions, as illustrated in "gure 13. [34] [35]

function divide(

 dependencies: { logger: (message: string) {| void },

 a: number,

 b: number,

): Result<number, DivisionByZeroError> {

 dependencies.logger(`Dividing ${a} by ${b}`)

 if (b pqr 0) {

 return err(new DivisionByZeroError("Can't divide by zero"))

 }

 return ok(a / b)

}

Fig. 13: Function using dependency injection to manage the logger dependency.

This method allows for easy replacement or mocking of dependencies during

testing. For instance, when testing the divide function, console output may not be

desired. By passing a mock logger function as a dependency, the test can capture

and verify log messages without a#ecting the console. See "gure 14.

33

const logger = vi.fn()

const result = divide({ logger }, 10, 0)

expect(logger).toHaveBeenCalledWith('Dividing 10 by 0')

Fig. 14: Example test using a mock logger provided using dependency injection.

Figure 15 shows how the console.log function can be injected as a dependency to

create a new function that can be used during runtime.

const runtimeDivide = (*+,params: Tail<Parameters<typeof divide�Ä) {| {

 return divide({ logger: console.log }, *+,params)

}

Fig. 15: Injecting a dependency to a function during runtime.

Since manually injecting dependencies requires more complex type helpers, which

can be verbose and confusing for less experienced contributors, Datadive o#ers

utility functions to simplify this process. See "gure 16 for an example. These utility

functions ensure that only Result or ResultAsync for asynchronous operations can

be returned from the function. This enforces both dependency injection

conventions and a consistent error handling strategy.

34

interface MathInjection {

 logger: (message: string) {| void

}

const [define, inject] = createInjectionUtilities<MathInjection>()

const divide = define((dependencies, a: number, b: number) {| {

 dependencies.logger(`Dividing ${a} by ${b}`)

 if (b pqr 0) {

 return err(new DivisionByZeroError("Can't divide by zero"))

 }

 return ok(a / b)

})

const runtimeDivide = inject({ logger: console.log }, divide)

Fig. 16: Example, using utility functions to simplify dependency injection.

4.6. Factory Functions

Factory functions are functions that create and return objects. They are commonly

used to encapsulate object creation logic and provide a way to customize object

creation without exposing the underlying implementation. [36]

Datadive uses factory functions to create instances of objects with complex

initialization logic and to abstract object creation from the calling code. Like in

"gure 17, factory functions typically have the create pre"x and accept

con"guration options as arguments. Datadive packages that rely heavily on

dependency injection use factory functions to create objects that include all their

methods with injected dependencies.

35

const createUser = define((dependencies, name: string) {| {

 dependencies.db.insertUser({ name })

})

const createNotebook = define((dependencies, path: string) {| {

 dependencies.db.insertNotebook({ path })

})

export function createCore(config: { db: { url: string } }) {

 const db = createDb(config.db.url)

 return {

 createUser: inject({ db }, createUser),

 createNotebook: inject({ db }, createNotebook),

 }

}

Fig. 17: Example factory function used to create an object of methods with injected dependencies.

4.7. Enum Like Objects

Enum-like objects are collections of related constants. They resemble enums in

other languages but are implemented as objects. This pattern is common in

TypeScript, where enums can have certain pitfalls. One issue is that their

transpilation to JavaScript may lead to unexpected behavior, particularly when

iterating over the values. As shown in "gure 18, enum-like objects are typically

constant objects with string primitive values. They also have a type of the same

name that is a union of the object's values [37]. In Datadive, enum-like objects

de"ne a set of related values used throughout the codebase. For example, the

LandlordTable and TenantTable objects specify the names of all tables available in the

landlord and tenant databases, respectively.

36

const LandlordTable = {

 User: 'user',

 Notebook: 'notebook',

} as const

wx 'user' | 'notebook'

type LandlordTable = ValueOf<typeof LandlordTable>

function printTable(table: LandlordTable) {

 wx used as type

 console.log(table)

}

printTable(LandlordTable.User) wx used as value

printTable(LandlordTable.Notebook) wx used as value

Fig. 18: Example enum-like object defining the names of tables in the landlord database.

37

5. Technologies

As already mentioned, maintainability is the most important requirement for the

Datadive codebase. The selection of technologies was made in such a way that it

presents a low entry barrier for contributing code to Datadive. This approach

involves using a limited number of programming languages and technologies. It also

prioritizes tools that assist developers in the development process, such as those that

enable static analysis of the code to prevent bugs before they are committed and

enforce best practices.

Other important factors in technology selection include the adoption rate and

popularity within the JavaScript ecosystem. These factors are signi"cant because

widely adopted technologies tend to be more stable, o#er more learning resources,

and are more likely to receive ongoing maintenance. Additionally, choosing

technologies commonly used in the industry can provide developers contributing

to Datadive with valuable experience that extends beyond the project's scope. To

assess the adoption rate and popularity of technologies, this thesis considers the

Stack Over!ow Developer Survey 2024, the State of JavaScript 2022, and the

GitHub Octoverse 2023. [38] [39] [40]

The following sections describe the major technologies used in the Datadive

codebase and the reasons for their selection. Please note that not all dependencies

used in Datadive are listed here, since some are only relevant for speci"c parts of the

codebase. The technologies described here are those that have a signi"cant impact

on the overall architecture and development process of Datadive.

5.1. Typescript

Since Datadive is an application with a very interactive frontend, one of the earliest

requirements was that the frontend should be a SPA. Thus, the Datadive client app,

which is the part of Datadive that provides the user interface, is executed in the

browser. Although modern browsers theoretically allow the execution of

WebAssembly (WASM) compiled code, which can be written in a variety of10

38

di#erent languages, all modern frameworks for creating SPA's use JavaScript as the

primary language. Despite WebAssembly being a promising technology, it is not yet

widely adopted in the industry, and the tools and libraries available for it are not as

mature as those for JavaScript. Additionally, WebAssembly is not intended to

replace JavaScript in the browser but to complement it. [41] [38]

JavaScript, or more precisely ECMAScript, is a high-level, interpreted

programming language. Originally developed in the mid-1990s by Netscape,

JavaScript has for many years been the most used language in software

development. However, as a dynamically typed language, variable types are

determined at runtime rather than at compile time. While this !exibility can allow

for quicker development, it can also lead to potential runtime errors since type-

related issues may not be detected until the code is executed. [38] [42]

To enable static code analysis tools and reduce type-related bugs, Datadive uses

TypeScript. Introduced by Microsoft in 2012, TypeScript is a statically typed

superset of JavaScript that gets transpiled to JavaScript by the TypeScript Compiler

(tsc). TypeScript automatically infers type information from both the code and

type annotations. This type information is utilized by IDE integrations and tsc to

perform static analysis of the codebase. It can also allow for quicker contributions

from developers who are unfamiliar with the codebase. Although developers need

to learn TypeScript's type annotation features, this understanding provides insights

that can help in comprehending the codebase and ensuring that changes do not

unexpectedly introduce bugs. Writing code in TypeScript and transpiling it to

JavaScript is supported by all web frameworks considered for the Datadive

frontend. In the recent years TypeScript has gained popularity in the industry, as it

is used by many large companies and open-source projects. The State of JavaScript

2022 survey reports that 68.4% of respondents have used TypeScript. The GitHub

Octoverse 2023 report lists TypeScript as the 3rd most popular language on

GitHub, with over 3 million repositories using it. The Stack Over!ow Developer

39

Survey 2024 reports that 38.5% of respondents have done extensive development

work in TypeScript, making it the 4th most used language in the survey. [43] [38]

[39] [40]

The decision to use TypeScript in the frontend strongly supports its adoption

for Datadive's backend development as well. Since the introduction of Node.js, the

"rst popular JavaScript server runtime, in 2009, JavaScript has gained signi"cant

popularity for backend development. Later, TypeScript also emerged as a favored

choice in this area. This growth is supported by a wide range of libraries and

frameworks in the server-side JavaScript ecosystem. Using TypeScript for both the

frontend and backend facilitates code sharing between the two parts of the

application, including data structures and utility functions. Most importantly, this

approach allows developers to work on both parts of Datadive without needing to

switch between di#erent programming languages. [38] [39]

5.2. Bun

In recent years, several new runtimes where introduced to the server-side

JavaScript ecosystem. Some of these are designed for speci"c contexts, such as

serverless environments or microservices, while others serve more general purposes

and can be applied to a wide range of applications. One notable general-purpose

runtime is Bun, which emphasizes performance and e$ciency by integrating a

JavaScript engine, a test runner, a script runner, a bundler, and a package manager

into a single tool. Bun is designed to optimize execution speed and minimize startup

times, supporting both JavaScript and TypeScript applications. It incorporates

modern JavaScript features and aims to streamline development work!ows by

consolidating various tools. [44] [45]

The choice of using Bun as the runtime for the Datadive backend aims to create

a more cohesive environment for developers by reducing the number of tools

needed to set up a functional development environment or deploy Datadive.

11

40

5.3. Kubernetes

Kubernetes is an open-source container orchestration platform that automates the

deployment, scaling, and management of containerized applications. It was

originally developed by Google and is now maintained by the Cloud Native

Computing Foundation (CNCF). Kubernetes provides a robust infrastructure for

deploying and managing containerized applications in production environments,

o#ering features such as load balancing, auto-scaling, and self-healing. Kubernetes is

widely used in the industry for deploying microservices, web applications, and other

cloud-native workloads. [38] [46]

Datadive leverages Kubernetes to manage the deployment of Jupyter servers for

each user through JupyterHub. Kubernetes provides the necessary infrastructure to

manage the lifecycle of Jupyter servers, including starting, stopping, monitoring,

and resource allocation. This approach allows Datadive to provide a secure and

isolated environment for users to work on data analysis projects.

5.4. Hono.js & Related Libraries

Hono.js is a web framework designed for building web applications and APIs,

speci"cally optimized for serverless and edge computing environments. Built with

TypeScript, it emphasizes type safety and adheres to web standards, which helps

!atten the learning curve for developers who are new to the framework. Its design

incorporates familiar concepts, such as the middleware pattern and route handler

de"nitions from other popular frameworks. This and it's adherence to web

standards makes it easier for developers to transition to Hono.js without having to

learn an entirely new paradigm. [47]

One of the key advantages of Hono.js is its !exibility in deployment. It can be

used in various environments, including traditional servers, serverless platforms,

edge computing services and of course in the context of Bun applications. This

versatility means that if the deployment strategy for Datadive changes, the codebase

can be adapted without needing to rewrite the entire application. [47] [48]

41

The other reason Datadive uses Hono.js is its integration with

@asteasolutions/zod-to-openapi . This library allows writing OpenAPI speci"cations

in TypeScript, which can be used to provide types for Hono.js routes using

@hono/zod-openapi , validate incoming requests using @hono/zod-validator , and

generate an API client for the frontend. This integration ensures that the API

speci"cation is always up-to-date with the codebase, reducing the risk of

inconsistencies between the API and the implementation. [49] [50]

5.5. libSQL

libSQL is an open-source fork of SQLite that enhances its capabilities with modern

features while maintaining full compatibility. It introduces a server component for

remote database connections, an ALTER TABLE extension for modifying column types

and constraints, and several other improvements. This combination allows

Datadive to bene"t from SQLite's advantages, such as using an individual database

per tenant or creating an in-memory database for testing, while also leveraging

distributed databases for production. [51]

Additionally, libSQL supports local replicas, which may enable o%ine features in

Datadive in the future. This would allow users to work on their projects without an

internet connection and synchronize their changes once they are back online. [52]

5.6. Kysely & Kysely Codegen

Kysely is a SQL query builder for TypeScript that provides a type-safe and

composable API for constructing SQL queries. It supports various SQL dialects,

including SQLite, PostgreSQL, MySQL and libSQL. Queries are type checked

using TypeScript's type system, ensuring that queries are syntactically correct and

type-safe at compile time. These type checks are based on types provided by the

developer which describe the database structure. This approach helps prevent

runtime errors and makes it easier to refactor queries as the codebase evolves. [53]

12

42

Kysely "ts well in the objective of datadive to use strict type checks and static

analysis to prevent bugs before they are committed. It's API is also designed to be

similar to SQL syntax, which can make it easier for developers familiar with SQL to

write queries in TypeScript.

Kysely Codegen generates the types provided to Kysely from a database schema.

It works by connecting to a database and using Database introspection to extract

the schema information, which is then used to generate TypeScript types for tables

and columns. This process ensures that the types used in Kysely queries are always

in sync with the database schema, reducing the risk of type mismatches and

inconsistencies between the codebase and the database. [54]

5.7. React

React (see react.dev) is a JavaScript library for building user interfaces, developed by

Meta (formerly Facebook) in 2013. It employs a declarative programming model,

allowing developers to describe the desired state of the UI while React updates the

DOM to match that state. React is known for its component-based architecture,

which enables the creation of reusable UI components. [55]

React's popularity and extensive ecosystem of libraries and tools make it a

suitable choice for building the Datadive frontend. Its component-based

architecture aligns well with the modular design of the frontend, allowing

developers to create reusable components for di#erent parts of the user interface.

Additionally, React's strong community support and active development make it a

reliable choice for long-term maintenance and scalability. [38] [39]

5.8. TanStack Router and TanStack Query

TanStack Router and TanStack Query are libraries developed by Tanner Linsley

that provide routing and data fetching capabilities for React applications.

TanStack Router is a !exible and extensible routing library that allows developers

to de"ne routes and handle navigation in React applications. It supports nested

routes, route parameters, and route guards, enabling developers to create complex

https://react.dev/

43

routing structures with ease. [56]

TanStack Query is a data fetching library that simpli"es fetching, caching, and

updating data in React applications. It provides a declarative API for fetching data

from APIs and managing the data lifecycle, including caching, pagination, and

optimistic updates. TanStack Query integrates seamlessly with TanStack Router,

allowing developers to fetch data based on the current route and update the UI in

response to data changes. [57]

5.9. Vite & Vitest

Vite is a modern build tool for front-end development that focuses on speed and

simplicity. It leverages native ES modules to provide fast build times and instant hot

module replacement (HMR) during development. Vite supports various front-end

frameworks, including React, Vue, and Svelte. It o#ers a streamlined development

experience with features such as pre-con"gured development servers, optimized

production builds, and built-in support for TypeScript and CSS preprocessors. [39]

[58]

Vitest is a unit testing framework speci"cally designed to integrate with Vite. It

provides an e$cient and high-performance testing experience by utilizing Vite's

architecture and optimizations. Vitest leverages Vite's on-demand compilation and

native ES module support, allowing tests to run without a separate bundling

process. [39] [59]

Given the choice of Vite as frontend build tool, Vitest is the natural choice for

testing in the datadive frontend. To keep the amount of technologies used in the

Datadive codebase low, Vitest is also used for testing the backend.

5.10. Tailwind CSS

Tailwind CSS is a utility-"rst CSS framework that provides a set of pre-built utility

classes for styling web applications. It allows developers to create custom designs

without writing custom CSS by combining utility classes to style elements.

Tailwind CSS is designed to be customizable, enabling developers to create unique

44

designs by con"guring the framework's utility classes. Since it's highly !exible and

e$cient, Tailwind CSS has been widely adopted by developers and companies

worldwide, including major tech organizations like GitHub, Net!ix, and Shopify,

making it one of the most popular CSS frameworks in modern web development.

[60] [61]

The decision to use Tailwind CSS for the Datadive frontend aims to streamline

the styling process and provide a consistent design system across the application.

Tailwind CSS's utility classes restrict the number of custom styles available to

developers, reducing the risk of inconsistent styling and making it easier to maintain

and update the design system. Additionally, writing CSS using utility classes can

lighten the cognitive overhead of styling elements by abstracting away the need to

write custom CSS selectors and consider about class naming conventions.

5.11. Astro.js

Astro.js is a modern web framework designed to simplify the creation of high-

performance, content-focused websites. It employs a novel architecture that

combines the best features of server-side rendering (SSR) and static site generation

(SSG). Astro.js introduces "partial hydration," allowing developers to selectively

hydrate interactive components on the client side while rendering most of the page

content on the server. This approach reduces the amount of JavaScript sent to the

client, leading to faster page loads and improved performance. [62]

Datadive utilizes Astro.js, speci"cally the documentation template Starlight, for

its documentation. This choice somewhat deviates from the goal of using a minimal

number of technologies, as Astro.js is another web framework. However, as a static

site generator, Astro.js is a better "t for documentation than React, which is the

frontend framework used for the Datadive client app. Most Datadive maintainers

will only need to write Markdown "les. Astro.js then uses these "les as input to

generate the documentation, meaning most developers working on Datadive won't

need to learn Astro.js to contribute to the documentation. [63]

45

5.12. Zod

Zod is a TypeScript-"rst schema declaration and validation library that provides a

simple and expressive API for de"ning data schemas. It allows developers to de"ne

data structures using TypeScript, infer the types of the validated data to use them

for type checking and validate data against those schemas at runtime. [64]

Datadive relies heavily on Zod for de"ning data structures. In the backend, zod

schemas are used to validate incoming requests and responses, ensuring that the

data conforms to the structure de"ned in the Datadive API Speci"cation. This

validation helps prevent malformed data from entering the system and ensures that

the data is consistent and predictable. In the frontend, zod schemas are used to

validate user input and responses from the backend. By using Zod, Datadive

enforces data integrity and consistency across the application, reducing the risk of

runtime errors and data corruption.

5.13. neverthrow

Neverthrow is a TypeScript library that provides a approach to error handling that

is inspired by functional programming and error handling in the Rust

programming language. It introduces the Result type, which represent the result of

an operation as either a success value or an error value. By using the Result type,

developers can handle errors in a composable and type-safe manner. [65]

Datadive uses neverthrow to handle errors in the backend. Returning Result

types from core methods and repositories, errors are part of a methods type

signature, making it easier to reason about which errors can happen and

encouraging explicit error handling.

5.14. Radix UI

Radix UI is a collection of low-level, accessible UI components for React. It o#ers a

set of unstyled components that developers can use to create custom designs while

ensuring accessibility and usability. [66]

46

Datadive utilizes Radix UI to develop accessible and customizable UI

components for the client app. The unstyled nature of Radix UI components

enables Datadive contributors to create custom designs. This choice was made

because Datadive will feature a complex, highly interactive frontend with custom

UI components not available in styled component libraries. The initial e#ort

required to style Radix UI components can be o#set by using templates like

shadcn/ui, which provide pre-styled components based on Radix UI and other

unstyled component libraries. [67]

5.15. ESLint

ESLint is a static code analysis tool for identifying problematic patterns in

JavaScript code. It enforces coding standards and best practices, helping developers

write clean, consistent, and maintainable code. ESLint is highly con"gurable,

allowing developers to customize the rules and plugins used to analyze the codebase.

[68]

Datadive uses ESLint to enforce coding standards and best practices in the

codebase. By con"guring ESLint with a set of rules that align with Datadive's

coding standards, developers can identify and "x potential issues before they are

committed. ESLint also integrates with IDEs and text editors, providing real-time

feedback on code quality and helping Datadive contributors to adhere to the

established coding standards.

5.16. Prettier

Prettier is an opinionated code formatter that automatically formats code to ensure

consistency and readability. It enforces a consistent code style by parsing the code

and reformatting it according to prede"ned rules. Prettier supports various

programming languages, including JavaScript, TypeScript, CSS, and HTML. [69]

Datadive uses Prettier to maintain a consistent code style across the codebase. By

con"guring Prettier with a set of formatting rules, developers can ensure that the

code is formatted consistently and adheres to the established coding standards.

47

Prettier integrates with IDEs and text editors, providing automatic code formatting

and reducing the time spent on manual formatting tasks.

5.17. Turborepo

Turborepo is a build system speci"cally designed for managing JavaScript and

TypeScript monorepos. It addresses the challenges associated with such repositories

by implementing e$cient build and caching mechanisms. Turborepo uses a task

graph to identify the minimal set of tasks required for a build, thus optimizing the

build process and reducing redundant work. This task graph enables intelligent task

scheduling, which can signi"cantly decrease build times in large-scale projects. By

caching outputs, Turborepo avoids unnecessary recomputation, enhancing build

e$ciency. This system is particularly advantageous for development teams working

within monorepos, as it supports a more e$cient work!ow and can enhance the

overall developer experience. [70]

Datadive uses Turborepo to manage the monorepo structure of the codebase. By

leveraging Turborepo's build system, Datadive can optimize the build process,

reduce build times, and enhance the development work!ow. This choice aligns with

Datadive's focus on maintainability and e$ciency, as Turborepo provides a scalable

solution for managing a large codebase.

5.18. Lucia Auth

Lucia Auth was a package designed for managing user authentication and

authorization in web applications. However, since the start of this thesis, it has been

deprecated and is now a resource for learning how to implement session-based

authentication in web applications. [71] [72]

Datadive uses Lucia Auth for user authentication in the @datadive/auth package,

which will need to be refactored with a di#erent solution in the future.

48

5.19. GitHub Actions

GitHub Actions is a feature that allows developers to automate tasks such as

building, testing, and deploying code. Actions are de"ned using YAML "les, which

outline the steps to execute, the conditions for running them, and the environment

in which they operate. GitHub Actions can be triggered by events like pushes to a

repository, pull requests, or issue comments. [73]

The Datadive repository uses GitHub Actions to automate the execution of tests

and linting tasks whenever code is pushed to the main branch or a pull request is

opened. GitHub Actions also deploy the documentation site to GitHub Pages

when changes are merged into the main branch.

49

6. Third Party Services

Datadive uses third party services to avoid implementing complex functionality that

is not core to the platform. This chapter provides an overview of the services used

by Datadive, explaining their purpose, structure, and interactions.

6.1. Turso

Turso is a distributed database system that builds upon the core functionality of

libSQL which is an open source fork of SQLite. It takes the simplicity and ease-of-

use of the SQLite database engine and extends it to a distributed architecture.

Datadive uses libSQL Databases hosted on Turso to store and manage data for the

platform. The main reason is that Turso provides a full featured, scalable database

system that can handle large amounts of data and high query loads. It o#er features

like point-in-time restore, multi-database schemas and fault tolerance which are

essential for a platform like Datadive. These features are complicated to implement

and maintain, so using Turso allows the Datadive team to focus on building the

core functionality of the platform. [52]

6.2. Resend

Resend is an email service designed speci"cally for developers to build, test, and

send transactional emails at scale. The platform aims to provide a reliable and

scalable email delivery solution, focusing on deliverability and compliance to ensure

successful email communication for its customers.

Email delivery is a critical part of the Datadive platform, as it is used to send

noti"cations, alerts, and reports to users. Resend provides a simple API that allows

Datadive to send emails programmatically, without having to manage email servers

or infrastructure. The platform also o#ers features like tracking, analytics, and

reporting, which help the Datadive team monitor the performance of their email

campaigns and improve deliverability. [74]

50

6.3. GitHub

GitHub o#ers version control and collaboration tools through its web platform.

Developers can store code, track changes, and collaborate on projects. The platform

also features tools for reviewing code changes, automating development work!ows,

and hosting documentation. Datadive hosts its code on GitHub, utilizing it to

manage code contributions and project tasks. [75]

Datadive also uses GitHub Pages to host its documentation, that is developed in

the @datadive/docs package. GitHub Pages is a static site hosting service that serves

static web pages directly from a GitHub repository. [76]

51

•

•

•

•

•

•

7. Packages

This chapter provides an overview of the packages of the Datadive platform,

explaining their purpose and structure.

Except for some con"guration packages, all packages have a main entrypoint that

exports the main functionality of the package. Additionally, some packages have

another entrypoint that exports the error classes contained in the package. This is

done to prevent type errors when exporting functions that may return the error

classes from other packages.

7.1. The @datadive/db Package

The @datadive/db package contains database-speci"c code, including migrations,

seeds, and functions to initialize the database connection. It is separated into tenant

and landlord database code. Additionally, it includes a CLI for common

development tasks, such as running migrations or seeding the database.

execute - Function that executes a query on the database and returns a result

either containing the data or an error.

executePaginated - Function that executes a query on the database and returns a

result containing the paginated data or an error.

executeTakeFirst - Function that executes a query on the database and returns a

result containing the "rst row of the data or an error if the query failed or no

data was found.

createDatabaseClient - Function that creates a new database client instance. The

database client is used to communicate with a database.

createLandlordKysely - Factory function that creates a new Kysely instance using

a database client. Use the kysely instance to build queries which may be

executed using the execution functions.

LandlordTable - Enum like object that contains the names of all tables that are

available in the landlord database. Use this object to reference tables in queries.

52

•

•

•

•

•

•

•

•

•

•

•

createTenantKysely - Factory function that creates a new Kysely instance using a

database client. Use the kysely instance to build queries which may be executed

using the execution functions.

TenantTable - Enum like object that contains the names of all tables that are

available in the tenant database. Use this object to reference tables in queries.

DbError - Module that contains all error classes that may be returned when

using the database.

LandlordDatabaseSchema - Type that represents the schema of the landlord

database.

TenantDatabaseSchema - Type that represents the schema of the tenant database.

Selectable - Utility type to get the type of a data that can be selected from a

table in either the landlord or tenant database. This can be used to get the the

type of e.g. the result of a select query on the landlord user table by using

Selectable<LandlordTable, typeof LandlordTable.User> .

Insertable - Utility type to get the type of a data that can be inserted into a table

in either the landlord or tenant database. This can be used to get the the type of

e.g. the data that can be inserted into the landlord user table by using

Insertable<LandlordTable, typeof LandlordTable.User> . The insertable type may

not be the same as the selectable type, as some columns may be automatically

generated by the database.

Updatable - Utility type to get the type of a data that can be updated in a table in

either the landlord or tenant database. This can be used to get the the type of

e.g. the data that can be updated in the landlord user table by using

Updatable<LandlordTable, typeof LandlordTable.User> . The updatable type may

not be the same as the selectable or insertable type, as some columns may be

automatically generated by the database.

migrate - Function that runs database migrations.

getMigrationInfo - Function that returns information about the current state of

the database migrations, e.g. wether a migration has been run or not.

createDatabase - Function that creates a new database. This function is used to

53

•

•

create the tenant databases when a new tenant is created.

7.2. The @datadive/email Package

The @datadive/email package contains code for sending emails. It does not contain

any templates, as these are stored in the @datadive/core package co-located with the

code that uses them. This package is basically a thin abstraction around Resend

which is the service used to send emails. It's main entrypoint has the following

exports:

EmailError - Module that contains all error classes that may be returned when

using the email functions.

createEmail - Factory function that creates a new email object which contains all

functions necessary to send emails.

7.3. The @datadive/utils Package

The @datadive/utils package includes utilities used throughout the Datadive

platform. These functions are not tied to any speci"c part of the platform and can

be utilized across multiple packages. The package o#ers three entry points:

@datadive/utils/browser for browser-speci"c utilities, @datadive/utils/common for

utilities applicable in both browser and server environments, and

@datadive/utils/type for utility types. Since the package includes numerous exports,

primarily simple functions or types with attached JSDoc comments, they will not

be listed here.

7.4. The @datadive/auth Package

The @datadive/auth package contains code for authenticating users and managing

user sessions. It provides functions handling user authentication and authorization.

The package is divided into two main parts, one part for tenant authorization and

one part for landlord authorization. The session handling is implemented according

to the instructions of Lucia Auth. It's main entrypoint has the following exports:

54

•

•

•

•

•

•

•

•

createLandlordAuth - Factory function that creates a new auth object which

contains all functions necessary to authenticate users.

createTenantAuth - Factory function that creates a new auth object which

contains all functions necessary to authenticate users.

AuthError - Module that contains all error classes that may be returned when

using the auth functions.

7.5. The @datadive/spec Package

The @datadive/spec package contains the speci"cations for the Datadive HTTP

API. It uses the @asteasolutions/zod-to-openapi to de"ne the routes and models of

the API in Typescript. The spec is used to provide validation and type safety to the

backend, to generate an API client for the frontend, and to generate the OpenAPI

documentation. The package exports:

LandlordEndpoints - Object that contains the speci"cation of all landlord

endpoints of the API.

TenantEndpoints - Object that contains the speci"cation of all tenant endpoints

of the API.

ApiError - Object that contains the speci"cations of all errors that may be

returned by the API.

ApiErrorName - Enum-like object that contains the names of all errors that may

be returned by the API.

ApiErrorCode - Enum-like object that contains the codes of all errors that may be

returned by the API.

7.6. The @datadive/core Package

The @datadive/core package contains the core functionality of the Datadive

platform. It includes the main application logic, such as handling user interactions,

managing data, and orchestrating the communication between the backend and the

55

•

•

•

Jupyter components. The package is divided into tenant and landlord code. It's

main entrypoint has the following exports:

createLandlordCore - Factory function that creates a new core object which

contains all functions that implement the core functionality of the landlord

part of the platform.

createTenantCore - Factory function that creates a new core object which

contains all functions that implement the core functionality of the tenant part

of the platform.

CoreError - Module that contains all error classes that may be returned when

using the core functions.

7.7. The Con"guration Packages

The Datadive repository includes several con"guration packages that are used to

distribute shared con"guration "les across the repository. The con"guration

packages include @datadive/eslint which contains the ESLint con"guration,

@datadive/storybook which contains the Storybook con"guration, and

@datadive/tsconfig which contains the TypeScript con"guration for the Datadive

repository. These packages are used to ensure consistent linting, formatting, and

build con"gurations across the Datadive codebase.

56

8. Applications

The Datadive repository contains three separate applications: the frontend, the

backend, and the documentation. Each application is stored in a separate package in

the /apps directory of the repository. This chapter provides an overview of each

application, explaining its purpose and structure.

All applications are set up to be built using the bun run build command. This

command compiles the TypeScript code into JavaScript and outputs it to the dist

directory. You can then start the server with the bun run start command, which

runs the compiled code in production mode using the con"guration from the

.env.production.local "le. To start the development server with hot reloading , use

the bun run dev command. This command launches the server in development

mode using the con"guration from the .env.development.local "le.

8.1. The @datadive/api App

The API application is the backend of the Datadive platform. It provides a HTTP

API for interacting with the platform that is implemented using Hono.js. The API

application is responsible for handling requests from the frontend, executing data

analysis tasks, and managing user data. It interacts with the tenant and landlord

databases to store and retrieve data, as well as with the Jupyter components to

execute data analysis work!ows. The API application is designed to be scalable and

extensible, allowing new endpoints and functionality to be added easily. All

endpoints follow the speci"cation de"ned in the @datadive/spec package.

13

57

api/
├── README.md
├── package.json
├── src/
│ ├── api-env.ts
│ ├── index.ts
│ ├── landlord/
│ │ ├── middleware/ # Landlord specific middleware
│ │ ├── routes/ # Landlord specific routes
│ │ └── shared/ # Shared landlord code
│ ├── reset.d.ts
│ ├── shared/
│ │ ├── exceptions/ # Shared exceptions
│ │ └── utilities/ # Shared utilities
│ └── tenant/
│ ├── middleware/ # Tenant specific middleware
│ ├── routes/ # Tenant specific routes
│ └── shared/ # Shared tenant code
├── tsconfig.build.json
└── tsconfig.json

Fig. 19: Structure of the @datadive/api application

As shown in "gure 19, the code is divided between tenant and landlord

functionality, with each part containing its own set of routes and middleware. The

entrypoint of the server is located in the src/index.ts "le, which initializes the server

and sets up the routes and middleware of both the tenant and landlord parts. It also

serves the build output of the React web application, which is the fallback response

for all requests that do not match an API endpoint.

The con"guration for the development mode of the API application is stored in

the .env.development.local environment "le. This "le contains the con"guration for

the landlord database connection, the port on which the server should run, and

other con"guration that is speci"c to the development environment. The

environment "les are loaded and validated before the server is started, ensuring that

the application runs with the correct con"guration. The schema for the

environment "les is de"ned in the src/api-env.ts "le, which uses the T3 Env (see

env.t3.gg) package and Zod (see zod.dev) for validation. An example of the

environment "le is provided in the .env.example "le.

https://env.t3.gg/
https://zod.dev/

58

8.2. The @datadive/web App

The web application is the frontend of the Datadive platform. It's implemented

using React, Vite and TanStack Router. The web application is an SPA that

includes both the landlord and tenant interfaces. The landlord interface is used by

administrators to manage users, projects, and notebooks, while the tenant interface

is used by users for data analysis tasks. The web application interacts with the

Datadive HTTP API to handle user interactions. It uses TanStack Query and an

API client generated from the OpenAPI speci"cation to communicate for data

fetching.

The datadive web application is very minimal, only a demo application to show

the concept of the platform and provide a skeleton for future development. It is not

intended to be a full-featured application, but rather a starting point for building a

more complex frontend with rich functionality.

The code is divided between tenant and landlord functionality, with each part

containing its own set of pages and components. The entrypoint of the application

is located in the src/main.tsx "le. Pages are stored in the src/routes directory,

according to the conventions of the "le based routing system of TanStack Router.

Landlord routes are located in the src/routes/landlord directory, while tenant routes

are located in the src/routes directory. Pages are tightly coupled to TanStack router,

using it's features like useRoute and useParams to access the current route and

parameters. Components are stored in the src/components directory, with shared

components located in the src/components/shared directory, landlord speci"c

components in the src/components/landlord directory, and tenant speci"c

components in the src/components/tenant directory. Components are designed to be

reusable and composable, following the principles of component-driven

development. They should not use any TanStack Router speci"c features but

instead rely on props and context to access data and functionality.

59

The application can be build using the bun run build command, which creates a

production build of the web application and outputs it to the dist directory. The

production build can be started using the bun run start command, which serves the

compiled code using the con"guration from the .env.production.local "le. The

production build is also served by the API application.

8.3. The @datadive/docs App

The documentation application is a static site that provides information about the

Datadive platform. It is implemented using Astro.js and more speci"cally Starlight

template (see starlight.astro.build). The documentation application is stored in the

/apps/docs directory of the repository.

The folder structure of the documentation application is determined by the

folder structure of Starlight. The documentation is stored

https://starlight.astro.build/

60

9. Setup Development Environment

The setup of the development environment contains several steps that need to be

followed to ensure that the Datadive platform can be developed and tested locally.

This chapter provides a step-by-step guide on how to set up the development

environment for the Datadive platform. The guide covers the installation of the

required tools, the con"guration of the development environment, and the setup of

the project repository.

9.1. Jupyter Hub

The Datadive platform uses JupyterHub as a component of the backend. It is used

to manage Jupyter Servers for users, which in turn are used to manage and execute

notebooks. Subsequently, JupyterHub needs to be installed and con"gured to run

the Datadive platform. Since JupyterHub is run in Kubernetes, the setup of a local

Kubernetes cluster is required. To set up a local Jupyter Hub environment, follow

the steps in the Zero to JupyterHub guide for a local Kubernetes Cluster in

Minikube. [77]

9.2. VSCode

VSCode is the recommended code editor for developing the Datadive platform. It

provides a rich set of features for code editing, debugging, and version control. It is

possible to use other code editors, but the Datadive repository contains settings and

extensions for VSCode that make development easier. To install Visual Studio

Code, download the installer from the o$cial website and follow the installation

instructions for your operating system. [78]

9.3. Bun

Bun is the runtime environment for the Datadive platform. It is also the package

manager used to manage the dependencies of the platform. To install Bun, follow

the installation instructions on the o$cial website. [45]

61

9.4. Turso Account

The Datadive platform utilizes Turso as a third-party service for distributed

databases. To use Turso, create a free account on the Turso website (see turso.tech).

Datadive requires one database for the landlord and one for each tenant. The free

account has some limitations: as of this writing, it supports 500 databases with a

maximum of 9GB of storage, 1 billion rows read, and 25 million rows written per

month. However, these limits are more than su$cient for the development and

testing purposes of the Datadive platform.

9.5. Resend Account

Resend is a third-party service used by the Datadive platform to send transactional

emails. To use Resend, create an account on the Resend website. A free account

allows sending up to 3000 emails per month and 100 emails per day. This limit is

su$cient for the development and testing purposes of the Datadive platform. [74]

9.6. Repository Setup

The Datadive repository is hosted on GitHub and contains all the code for the

platform. To clone the repository, run the following command:

git clone https:wxgithub.com/lucaschultz/datadive.git

This command will create a local copy of the repository in a directory named

datadive . Navigate to this directory to start working on the Datadive platform. The

Datadive platform has several dependencies that need to be installed before you can

start developing. To install the dependencies, run the following command in the

root directory of the repository:

https://turso.tech/

62

bun install

This command will install all the required packages and tools needed to run the

Datadive platform. Once the installation is complete, build all packages by running:

turbo build

This might take a while as it compiles all the TypeScript code into JavaScript. It is

necessary because some of the packages depend on the build output of other

packages.

9.6.1. Environment Files

After the build is complete, set up the .env "les for development. Datadive needs

two env "les for development, one for the API and one for the web app. The

repository contains example "les that you can copy and modify. At the root of the

repository, run:

cp apps/web/.env.development.example apps/web/.env.development.local

cp apps/api/.env.development.example apps/api/.env.development.local

You don't need to change anything in the frontend env "le. The backend "le needs

to be modi"ed. Open the apps/web/.env.development.local "le in your code editor.

Replace <TURSO_API_KEY> with a valid API key for the Turso Platform API. This API

key can be created either in the Turso web interface or using the turso CLI by

running:

63

turso auth api-tokens mint <api-token-name>

Replace <api-token-name> with a name for the API token. The command will return

an API key that you can use in the .env.development.local "le. Next, replace

<RESEND_API_KEY> with a valid API key for the Resend API. This API key can be

created in the Resend web interface.

The Datadive repository includes a CLI tool that can be used for common

development tasks such as creating a landlord or tenant, running migrations, or

generating a new app key. An app key is used to encrypt sensitive data in the

database and is required for the development environment. To generate a new app

key, run:

bun run cli make:app-key --env=apps/web/.env.development.local --force

This command will generate a new app key and store it in the

apps/web/.env.development.local "le. The --force !ag is used to overwrite the

existing <APP_KEY> placeholder or app key. The app key is used to encrypt sensitive

data in the database and should be kept secret. If you change the app key, you'll

need to reset the landlord and delete all tenants. Therefore, it is recommended to

save a backup of the app key in a secure location like a password manager.

The Datadive platform requires a landlord to manage tenants. To create a

landlord, run the following command in the root directory of the repository:

bun run cli make:landlord --env=apps/web/.env.development.local development

64

This command will create a landlord database using the Turso API, run the

landlord migrations, and print the connection details to the console. The

connection details include the database URL and token, which are required to

connect to the landlord database. Replace the <LANDLORD_DATABASE_URL> and

<LANDLORD_DATABASE_TOKEN> placeholders in the apps/web/.env.development.local "le

with the connection details. The last step is to create a user for the landlord. To

create a user, run the following command in the root directory of the repository:

bun run cli seed:landlord --env=apps/web/.env.development.local

This command will create a user with the email developer@datadive.app and the

password password . You can use these credentials to log in to the landlord interface

of the Datadive platform.

9.7. Running Datadive

To start the Datadive platform, run the following command in the root directory of

the repository:

bun run dev

This command will start the Datadive platform in development mode. The

platform consists of the API and the web application. The API will be available at

http:wxlocalhost:3000 and the web application at http:wxlocalhost:3001 . You can

access the web application in your browser to start developing and testing the

Datadive platform.

9.8. Creating a Tenant

65

To create a tenant using the CLI, run the following command in the root directory

of the repository:

bun run cli make:tenant --env=apps/web/.env.development.local dev

This will create a tenant database using the Turso API and run the tenant

migrations. To access the tenant interface, open localhost:3001/landlord/dev. You

can log in with the email developer@datadive.app and the password password .

http://localhost:3001/dev/

66

10. Outlook

This thesis presents the architecture, code structure, and development environment

of the Datadive platform. Although the current state is far from a complete data

analysis platform, it lays a foundation for future development. This chapter reviews

the platform's current status and outlines the next steps needed to make it fully

functional for researchers.

10.1. Challenges and Limitations

Exploring and implementing a viable architectural framework for this thesis project

proved complex and time-consuming. While the initial plan aimed for a

comprehensive demonstration, time constraints ultimately limited the scope of

functionality. The architecture design underwent several iterations, and the

exploratory prototypes built to assess the architecture's feasibility consumed more

time than expected. Initially, the idea was to implement an event-driven architecture

that would execute code in plugins communicating with the main application

through a message broker. However, this approach was abandoned in favor of using

Jupyter components for code execution. Although the event-driven architecture

would have provided more !exibility, the Jupyter components o#ered a more

straightforward solution. This reduced the platform's complexity by o%oading code

execution to a well-established open-source project. Additionally, users can utilize

the Jupyter Lab interface of the Jupyter servers, allowing them to revert to writing

code in a Jupyter notebook if the Datadive GUI does not meet their needs.

The "rst prototype of a Jupyter-based architecture used a single Jupyter server

running in a Docker container for code execution. While this approach worked well

in a prototype, it did not allow for isolating user code execution in a production

environment. The "nal architecture employs individual Jupyter servers managed by

JupyterHub running in Kubernetes to execute code in isolated environments,

providing a secure and scalable solution for code execution.

67

This architecture lays a solid foundation for the Datadive platform, o#ering a

clear structure for future development. The repository containing the codebase is

organized to facilitate ongoing development, featuring clear documentation,

automatic code analysis, and a prototype that veri"es the proposed solutions.

The prototype enables users to create projects and notebooks, as well as execute

code using Jupyter components through the HTTP API and a limited frontend.

10.2. Next Steps

The immediate next steps for the Datadive platform involve enhancing the

functionality of both the frontend and backend applications. The data model

created by the migrations of the @datadive/db package includes all the tables

necessary for the platform's core functionality, such as user authentication, project

management, and notebook execution. The API de"nition in the @datadive/spec

package will be extended to include all necessary endpoints for this core

functionality, and these endpoints will be implemented in the @datadive/api

package. Another immediate step is to refactor the @datadive/auth package to

replace the deprecated Lucia Auth package with a custom authentication solution,

using Lucia Auth as a learning resource. [71] [72]

Since the entire data model revolves around users "owning" projects that contain

notebooks, it is essential to prioritize the implementation of endpoints for user

management and authentication, as these endpoints form the foundation for all

other functionalities. Once these endpoints are established, the next step will be to

implement the endpoints for project management, which will allow users to create,

update, and delete projects.

Subsequently, the endpoints for notebook management will be refactored to

enable users to create, update, and delete notebooks, as well as execute code within

them. To manage notebook content, cell template endpoints will be implemented,

allowing users to create, update, and delete cell templates. The "nal step to

68

complete the core interactions of Datadive will be to implement the endpoints for

managing notebook content, enabling users to utilize cell templates and required

input data to create, update, delete, and reorder cells in notebooks.

Another crucial step to get the Datadive platform production ready is

implementing a custom authenticator for JupyterHub and "guring out an

deployment strategy. The authenticator should regulate access to the Jupyter servers

by authenticating users against the Datadive API, allowing only authenticated users

to access the Jupyter servers [79]. This is crucial for the security of the platform, as it

ensures that only authorized users can execute code in the platform and that user

data is protected. The deployment strategy should include any the necessary

con"guration for a production Kubernetes cluster, such as setting up the

JupyterHub Helm chart, con"guring the JupyterHub authenticator and several

other settings that are necessary for a production deployment of Jupyter Hub. It is

also likely, that Datadive will need a custom Jupyter Server Docker image that

includes con"gurations to allow installing additional packages and libraries or

restrict access to certain parts of the Jupyter Lab interface to ensure that users can

only use the features that won't interfere with the Datadive platform [13].

The next steps for the frontend are less clear because both the design and, more

importantly, user interactions require further exploration and de"ned

requirements. The platform's core interactions involve signi"cant complexity.

Designing a user-friendly "workspace" that allows users to manage notebook cells,

execute code, view results, and switch seamlessly to an IDE-like Jupyter Lab

interface is challenging. Implementing dynamically generated forms from server

data for cell input is complex, especially if these forms need to include UX-

enhancing features like client-side data validation or drafts to save progress. The

next steps for the frontend should focus on exploring various designs and user

interactions, de"ning clear requirements, and implementing the necessary

components and pages to support the platform's core interactions.

69

10.3. Beyond the Core Functionality

Once the core functionality of the Datadive platform is implemented, the next steps

involve extending the platform with additional features. These features should be

based on the requirements identi"ed in an upcoming conceptual phase of the

Datadive project. De"ning these features is beyond the scope of this thesis.

However, some potential features that are likely to be needed or have been discussed

during the conceptual phase of this thesis are listed in the following paragraphs.

One necessary feature is extending the platform with additional data import and

export functionality. The current data model allows "les to be stored on the Jupyter

Server of their respective project, with references stored in the database. This

approach is straightforward and e#ective if the "les are used only within the

project's notebooks. However, the Datadive platform will likely include features

that require access to data outside the notebook interface. For example, users may

want to preview or edit data before adding it to a project, share data between

projects or share data analysis results using public links. If the data is stored on a

Jupyter Server, that server must always be running for data to be accessible.

Running servers is resource-intensive, and keeping all servers operational at all times

is likely not scalable. Additionally, starting and stopping servers requires resources

and time, which means that accessing data by frequently starting and stopping

servers could lead to slow response times and is probably not scalable either. Storing

data outside of Jupyter servers may present additional challenges, such as accessing

"les within the Jupyter Server for code execution. One solution could involve

including a custom ContentsManager class in the Datadive Jupyter Server Docker

image. With a custom ContentsManager , "les could be stored in a shared location,

such as an S3 bucket, and accessed by the Jupyter Server through the Contents

Manager and by the Datadive backend via the S3 API. [80]

Another feature under discussion is an "assistant" that helps users select the

appropriate statistical test for data analysis based on the data's shape and meta-

information extracted from related sources, such as Qualtrics. This feature could be

14

70

developed by expanding the concept of cell templates beyond just a collection of

inputs and a code snippet with placeholders. Datadive could di#erentiate between

complex and simple cells, with complex cells linked to hardcoded functionality that

accesses project data and provides feedback to users. If this functionality were

implemented generically, it could pave the way for additional features that assist

users in completing data analysis tasks.

Other features that are needed are collaboration features, such as sharing

projects, notebooks, and "les not just with other users but also with external

collaborators. Version control is another important feature that is likely to be

needed. The current data model does not include versioning, which is crucial for

reproducibility. Implementing version control will require changes to the data

model and the backend API, as well as the frontend to support viewing and

restoring previous versions of projects and notebooks.

10.4. Conclusion

The Datadive platform, though still in its early stages, establishes a foundational

framework for developing a comprehensive data analysis tool. The project has made

key architectural choices, such as leveraging Jupyter components and implementing

a scalable infrastructure with JupyterHub and Kubernetes, which provide a solid

basis for further development. While not all planned features could be implemented

due to time constraints, the platform's modular design and organized codebase

support ongoing enhancements. The outlined steps for implementing core

functionalities, including user authentication, project management, and notebook

execution, are crucial for advancing the platform. Future work will focus on

addressing data management challenges and exploring additional features to assist

users in data analysis. Despite current limitations, this thesis lays the groundwork

for future development e#orts aimed at creating a functional research tool.

71

Notes

1. Runtime refers to the period when a program is executed and its instructions are

interpreted and processed by the computer's hardware, utilizing system resources

like memory and CPU. In contrast, compile time is the stage when a high-level

programming language is translated into a lower-level form, such as machine code or

bytecode, that can be directly executed by the computer. This translation process,

performed by a compiler, involves tasks like syntax checking, type checking, and

code optimization, and occurs before the program is run.

2. An IDE (Integrated Development Environment) is a software application that

provides comprehensive facilities to computer programmers for software

development. An IDE normally consists of at least a source code editor, build

automation tools, and a debugger. Some IDEs contain additional features, such as

version control, code review, and pro"ling tools. Typically, an IDE is dedicated to a

speci"c programming language, such as Python, Java, or C++.

3. The Hypertext Transfer Protocol (HTTP) is an application protocol for distributed,

collaborative, hypermedia information systems. HTTP is the foundation of data

communication on the internet, where hypertext documents include hyperlinks to

other resources that the user can easily access. In the context of APIs, HTTP is often

used to transfer JSON or XML data between clients and servers.

4. An application programming interface (API) is a set of rules and protocols that

allows di#erent software applications to communicate with each other. APIs de"ne

the methods and data formats that applications can use to request and exchange

data. In the context of web development, APIs are often used to enable

communication between the frontend and backend components of a web

application.

5. Docker is a platform for developing, shipping, and running applications in

containers. Containers allow developers to package an application with all of its

dependencies, including libraries and other binaries, and ship it as a single package.

This approach ensures that the application will run consistently across di#erent

environments, regardless of the underlying system con"guration. Docker containers

72

are lightweight, portable, and isolated, making them an popular solution for

deploying applications in a variety of environments, from local development

machines to production servers.

6. CRUD stands for create, read, update, and delete. It refers to the four basic

operations that can be performed on data. These operations are commonly used in

database management systems and web applications to manage data.

7. A single-page application (SPA) is a web application that interacts with the user by

dynamically rewriting the current page rather than loading entire new pages from

the server. This approach provides a more !uid user experience by avoiding the need

to reload the entire page when the user interacts with the application. SPAs are

typically built using JavaScript frameworks like React, Angular, or Vue.js.

8. Mocking is the process of simulating the behavior of a component or system to test

its interactions with other components or systems. In the context of API

development, mocking involves creating a simulated version of the API that can be

used to test the frontend application without requiring a fully functional backend.

9. Kebab case is a naming convention where words are written in all lowercase letters

and separated by hyphens (-) instead of spaces or underscores. Kebab case is

commonly used in "le names, URLs, and CSS classes to improve readability and

consistency. For example, a kebab case "le name might be my-file-name.ts .

10. WebAssembly (WASM) is a binary instruction format for a stack-based virtual

machine. It is designed as a portable compilation target for high-level languages like

C/C++/Rust, enabling code to run in the browser at near-native speed.

WebAssembly is supported by all major browsers and can be executed alongside

JavaScript in the same environment. [41]

11. A runtime is an environment that executes code written in a speci"c programming

language. Runtimes provide the necessary infrastructure to run code, including

libraries, APIs, and tools for compiling, interpreting, or executing code. In the

context of server-side JavaScript, a runtime is a platform that allows developers to

run JavaScript code on the server, enabling the development of web applications

using JavaScript for both the frontend and backend.

12. An API client is a software application that interacts with an API to send and

receive data. API clients are used to access the functionality provided by an API,

such as retrieving data, updating information, or performing speci"c actions.

73

13. Hot reloading is a feature that automatically reloads the application when changes

are made to the code. This allows developers to see the changes immediately without

having to manually refresh the page. Hot reloading is a common feature in modern

frontend development tools and frameworks.

14. Amazon S3 (Simple Storage Service) is a scalable object storage service o#ered by

Amazon Web Services (AWS) designed for storing and retrieving any amount of data

from anywhere on the web. It provides features such as durability, availability, and

security for data storage, making it suitable for various applications including data

backup, archiving, content distribution, and big data analytics. S3 organizes data

into buckets, with each object identi"ed by a unique key, enabling e$cient data

management and access.

74

Works Cited

1. Valero-Mora, P.M., Ledesma, R.D.: Graphical User Interfaces for R. Journal of

Statistical Software. 49, 1, 1–8 (2012). https://doi.org/10.18637/JSS.V049.I01.

2. Rüeger, S.: Chapter 1 Data Analysis | Robust data analysis: An introduction to R, h

ttps://sinarueeger.github.io/robust-data-analysis-with-r/data-analysis.html, last

accessed 2024/10/28.

3. Wickham, H.: You can't do data science in a GUI, https://www.youtube.com/watc

h?v=cpbtcsGE0OA, last accessed 2024/10/28.

4. Procida, D.: Diátaxis, https://diataxis.fr, last accessed 2024/10/28.

5. Schultz, L. Datadive Docs, https://docs.datadive.app, last accessed 2024/11/10.

6. Software Architecture | Software Engineering Institute, https://www.sei.cmu.edu/o

ur-work/software-architecture/, last accessed 2024/10/28.

7. Rule, A: We Analyzed 1 Million Jupyter Notebooks — Now You Can Too, https://

blog.jupyter.org/we-analyzed-1-million-jupyter-notebooks-now-you-can-too-guest-

post-8116a964b536, last accessed 2024/10/28.

8. Landy, J: Notebook Research, https://github.com/jupyter/notebook-research, last

accessed 2024/10/28.

9. Project Jupyter, https://jupyter.org, last accessed 2024/10/28.

10. The Jupyter Notebook Format, https://ipython.org/ipython-doc/3/notebook/nbfo

rmat.html, last accessed 2024/10/28.

11. Architecture - Jupyter Documentation, https://docs.jupyter.org/en/stable/projects/

architecture/content-architecture.html, last accessed 2024/10/28.

12. ZeroMQ, https://zeromq.org, last accessed 2024/10/28.

13. Customizing User Environment - Zero to JupyterHub with Kubernetes

documentation, https://z2jh.jupyter.org/en/latest/jupyterhub/customizing/user-en

vironment.html#customize-an-existing-docker-image, last accessed 2024/11/04.

14. JupyterHub REST API – JupyterHub Documentation, https://jupyterhub.readthe

docs.io/en/stable/reference/rest-api.html, last accessed 2024/11/04.

15. The REST API – Jupyter Server Documentation, https://jupyter-server.readthedoc

s.io/en/latest/developers/rest-api.html, last accessed 2024/11/04.

https://doi.org/10.18637/JSS.V049.I01
https://sinarueeger.github.io/robust-data-analysis-with-r/data-analysis.html
https://www.youtube.com/watch?v=cpbtcsGE0OA
https://diataxis.fr/
https://docs.datadive.app/
https://www.sei.cmu.edu/our-work/software-architecture/
https://blog.jupyter.org/we-analyzed-1-million-jupyter-notebooks-now-you-can-too-guest-post-8116a964b536
https://github.com/jupyter/notebook-research
https://jupyter.org/
https://ipython.org/ipython-doc/3/notebook/nbformat.html
https://docs.jupyter.org/en/stable/projects/architecture/content-architecture.html
https://zeromq.org/
https://z2jh.jupyter.org/en/latest/jupyterhub/customizing/user-environment.html#customize-an-existing-docker-image
https://jupyterhub.readthedocs.io/en/stable/reference/rest-api.html
https://jupyter-server.readthedocs.io/en/latest/developers/rest-api.html

75

16. Interactive Jupyter Server API Documentation – Swagger, https://petstore.swagger.

io/?url=https://raw.githubusercontent.com/jupyter/jupyter_server/master/jupyter

_server/services/api/api.yaml, last accessed 2024/11/04.

17. Potvin, R., Levenberg, J.: Why Google stores billions of lines of code in a single

repository. Communications of The ACM. 59, 7, 78–87 (2016). https://doi.org/10.

1145/2854146.

18. Workspaces – Package Manager | Bun Docs, https://bun.sh/docs/install/workspace

s, last accessed 2024/10/28.

19. Google TypeScript Style Guide, https://google.github.io/styleguide/tsguide.html,

last accessed 2024/10/28.

20. Deno Style Guide, https://docs.deno.com/runtime/contributing/style_guide/#type

script, last accessed 2024/10/28.

21. TypeScript Deep Dive StyleGuide, https://basarat.gitbook.io/typescript/styleguide,

last accessed 2024/10/28.

22. typescript-eslint, https://typescript-eslint.io, last accessed 2024/10/28.

23. Pocock, M: Intro To TypeScript Performance | Total TypeScript, https://www.total

typescript.com/typescript-performance, last accessed 2024/10/28.

24. Performance • microsoft/TypeScript Wiki, https://github.com/microsoft/Typescrip

t/wiki/Performance#preferring-interfaces-over-intersections, last accessed

2024/10/28.

25. Dorfmeister, D: Array Types in TypeScript, https://tkdodo.eu/blog/array-types-in-t

ype-script, last accessed 2024/10/28.

26. Kamp, P.: Why Should I Care What Color the Bikeshed Is?, https://bikeshed.com,

last accessed 2024/10/28.

27. Option Philosophy ⋅ Prettier, https://prettier.io/docs/en/option-philosophy, last

accessed 2024/10/28.

28. Dodds, K.: Your code style does matter actually | Epic Web Dev, https://www.epicw

eb.dev/your-code-style-does-matter-actually, last accessed 2024/10/28.

29. Polanski, E: Introduction to Functional Programming using TypeScript and fp-ts, h

ttps://github.com/enricopolanski/functional-programming, last accessed

2024/10/28.

https://petstore.swagger.io/?url=https://raw.githubusercontent.com/jupyter/jupyter_server/master/jupyter_server/services/api/api.yaml
https://doi.org/10.1145/2854146
https://bun.sh/docs/install/workspaces
https://google.github.io/styleguide/tsguide.html
https://docs.deno.com/runtime/contributing/style_guide/#typescript
https://basarat.gitbook.io/typescript/styleguide
https://typescript-eslint.io/
https://www.totaltypescript.com/typescript-performance
https://github.com/microsoft/Typescript/wiki/Performance#preferring-interfaces-over-intersections
https://tkdodo.eu/blog/array-types-in-type-script
https://bikeshed.com/
https://prettier.io/docs/en/option-philosophy
https://www.epicweb.dev/your-code-style-does-matter-actually
https://github.com/enricopolanski/functional-programming

76

30. Suggestion: 'throws' clause and typed catch clause • issue #13219 •

microsoft/TypeScript, https://github.com/microsoft/TypeScript/issues/13219, last

accessed 2024/10/28.

31. Borla H: Announcing Swift 6, https://www.swift.org/blog/announcing-swift-6/,

last accessed 2024/10/28.

32. Recoverable Errors with Result - The Rust Programming Language, https://doc.rus

t-lang.org/book/ch09-02-recoverable-errors-with-result.html, last accessed

2024/10/28.

33. Hudak, P., Peterson, J.; Fasel J.: About Monads - A Gentle Introduction to Haskell,

https://www.haskell.org/tutorial/monads.html, last accessed 2024/10/28.

34. Nteifeh, H.: Functional Dependency Injection In Typescript, https://hugonteifeh.

medium.com/functional-dependency-injection-in-typescript-4c2739326f57, last

accessed 2024/10/28

35. Nault, A.: Dependency Inversion Principle in Functional TypeScript, https://alexna

ult.dev/dependency-inversion-principle-in-functional-typescript, last accessed

2024/10/28.

36. Factory Pattern, https://www.patterns.dev/vanilla/factory-pattern/, last accessed

2024/10/28.

37. Pocock, M.: Why I Don't Like Enums | Total TypeScript, https://www.totaltypescri

pt.com/why-i-dont-like-typescript-enums, last accessed 2024/10/28.

38. 2024 Stack Over!ow Developer Survey, https://survey.stackover!ow.co/2024, last

accessed 2024/10/28.

39. State of JavaScript 2022, https://2022.stateofjs.com/en-US, last accessed

2024/10/28.

40. Octoverse: The state of open source and rise of AI in 2023 - The GitHub Blog, http

s://github.blog/news-insights/research/the-state-of-open-source-and-ai/, last

accessed 2024/10/28.

41. WebAssembly, https://webassembly.org/docs/faq/#is-webassembly-trying-to-replac

e-javascript, last accessed 2024/10/28.

42. ECMAScript® 2025 Language Speci"cation, https://tc39.es/ecma262/, last

accessed 2024/10/28

43. TypeScript: JavaScript With Syntax For Types, https://www.typescriptlang.org, last

accessed 2024/10/28.

https://github.com/microsoft/TypeScript/issues/13219
https://www.swift.org/blog/announcing-swift-6/
https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html
https://www.haskell.org/tutorial/monads.html
https://hugonteifeh.medium.com/functional-dependency-injection-in-typescript-4c2739326f57
https://alexnault.dev/dependency-inversion-principle-in-functional-typescript
https://www.patterns.dev/vanilla/factory-pattern/
https://www.totaltypescript.com/why-i-dont-like-typescript-enums
https://survey.stackoverflow.co/2024
https://2022.stateofjs.com/en-US
https://github.blog/news-insights/research/the-state-of-open-source-and-ai/
https://webassembly.org/docs/faq/#is-webassembly-trying-to-replace-javascript
https://tc39.es/ecma262/
https://www.typescriptlang.org/

77

44. Best of JS • Runtime projects, https://bestofjs.org/projects?tags=runtime, last

accessed 2024/10/28.

45. Bun - A fast all-in-one JavaScript runtime, https://bun.sh, last accessed 2024/10/28

46. Kubernetes, https://kubernetes.io, last accessed 2024/10/28.

47. Hono - Web framework built on Web Standards, https://hono.dev, last accessed

2024/10/28

48. Getting Started - Hono, https://hono.dev/docs/getting-started/basic, last accessed

2024/10/28

49. Zod OpenAPI - Hono, https://hono.dev/examples/zod-openapi, last accessed

2024/10/28

50. Validation - Hono, https://hono.dev/docs/guides/validation#zod-validator-middle

ware, last accessed 2024/10/28

51. tursodatabase/libsql: libSQL is a fork of SQLite that is both Open Source, and

Open Contributions, https://github.com/tursodatabase/libsql, last accessed

2024/10/28.

52. Welcome to Turso - Turso, https://docs.turso.tech, last accessed 2024/10/28.

53. Kysely, https://kysely.dev, last accessed 2024/10/28.

54. RobinBlomberg/kysely-codegen: Generate Kysely type de"nitions from your

database, https://github.com/RobinBlomberg/kysely-codegen, last accessed

2024/10/28.

55. React, https://react.dev, last accessed 2024/10/28.

56. TanStack Router, https://tanstack.com/router/latest, last accessed 2024/10/28.

57. TanStack Query, https://tanstack.com/query/latest, last accessed 2024/10/28.

58. Vite | Next Generation Frontend Tooling, https://vite.dev, last accessed

2024/10/28.

59. Vitest | Next Generation Testing Framework, https://vitest.dev, last accessed

2024/10/28.

60. Tailwind CSS - Rapidly build modern websites without ever leaving your HTML, h

ttps://tailwindcss.com, last accessed 2024/10/28.

61. State of CSS 2024, https://2024.stateofcss.com/, last accessed 2024/10/28.

62. Astro, https://astro.build, last accessed 2024/10/28.

63. Starlight with Astro® Build documentation sites, https://starlight.astro.build, last

accessed 2024/10/28.

https://bestofjs.org/projects?tags=runtime
https://bun.sh/
https://kubernetes.io/
https://hono.dev/
https://hono.dev/docs/getting-started/basic
https://hono.dev/examples/zod-openapi
https://hono.dev/docs/guides/validation#zod-validator-middleware
https://github.com/tursodatabase/libsql
https://docs.turso.tech/
https://kysely.dev/
https://github.com/RobinBlomberg/kysely-codegen
https://react.dev/
https://tanstack.com/router/latest
https://tanstack.com/query/latest
https://vite.dev/
https://vitest.dev/
https://tailwindcss.com/
https://2024.stateofcss.com/
https://astro.build/
https://starlight.astro.build/

78

64. colinhacks/zod: TypeScript-"rst schema validation with static type inference, http

s://github.com/colinhacks/zod, last accessed 2024/10/28.

65. supermacro/neverthrow: Type-Safe Errors for JS & TypeScript, https://github.com/

supermacro/neverthrow, last accessed 2024/10/28.

66. Radix Primitives, https://www.radix-ui.com/primitives, last accessed 2024/10/28.

67. shadcn/ui, https://ui.shadcn.com, last accessed 2024/10/28.

68. Find and "x problems in your JavaScript code - ESLint - Pluggable JavaScript Linter,

https://eslint.org, last accessed 2024/10/28.

69. Prettier, https://prettier.io, last accessed 2024/10/28.

70. Introduction | Turborepo, https://turbo.build/repo/docs, last accessed

2024/10/28.

71. Lucia, https://lucia-auth.com, last accessed 2024/10/28.

72. A fresh start • lucia-auth/lucia • Discussion #1714, https://github.com/lucia-auth/l

ucia/discussions/1714, last accessed 2024/10/28.

73. GitHub Actions documentation, https://docs.github.com/en/actions, last accessed

2024/10/28.

74. Resend, https://resend.com, last accessed 2024/10/28.

75. GitHub Docs, https://docs.github.com/en/, last accessed 2024/10/28.

76. GitHub Pages documentation, https://docs.github.com/en/pages, last accessed

2024/10/28.

77. Zero to JupyterHub with Kubernetes - Zero to JupyterHub with Kubernetes

documentation, https://z2jh.jupyter.org/, last accessed 2024/11/04.

78. Visual Studio Code - Code Editing. Rede"ned, https://code.visualstudio.com, last

accessed 2024/10/28.

79. Authenticators – JupyterHub Documentation, https://jupyterhub.readthedocs.io/

en/latest/reference/authenticators.html#how-to-write-a-custom-authenticator, last

accessed 2024/11/04.

80. Contents API - Jupyter Server documentation, https://jupyter-server.readthedocs.i

o/en/latest/developers/contents.html#contents-api, last accessed 2024/10/28.

https://github.com/colinhacks/zod
https://github.com/supermacro/neverthrow
https://www.radix-ui.com/primitives
https://ui.shadcn.com/
https://eslint.org/
https://prettier.io/
https://turbo.build/repo/docs
https://lucia-auth.com/
https://github.com/lucia-auth/lucia/discussions/1714
https://docs.github.com/en/actions
https://resend.com/
https://docs.github.com/en/
https://docs.github.com/en/pages
https://z2jh.jupyter.org/
https://code.visualstudio.com/
https://jupyterhub.readthedocs.io/en/latest/reference/authenticators.html#how-to-write-a-custom-authenticator
https://jupyter-server.readthedocs.io/en/latest/developers/contents.html#contents-api

